
The task
Problem: Estimate the radius r	of heat kernel in manifold 
embedding
Formally: Optimize Laplacian w.r.t. parameters (e.g. radius r)
Previous work: 
• asymptotic rates depending on the (unknown) manifold [4]
• Embedding dependent neighborhood reconstruction [6]
Challenge: it’s an unsupervised problem! What “target” to choose?
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Conclusions: Geometry Consistency (GC) is…
• Choosing the correct radius/bound/scale is important in 

any non-linear dimension reduction task1. 
• The GC Algorithm required minimal knowledge: 
•maximum radius, minimum radius, 
• (optionally: dimension d of the manifold.)

• The chosen radius can be used in
• any embedding algorithm
• semi-supervised learning with Laplacian Regularizer (see 

our NIPS 2017 paper)
• estimating dimension d (as shown here)

The radius 𝑟 affects…
• Quality of manifold embedding via neighborhood selection
• Laplacian-based embedding and clustering via the kernel for 

computing similarities 
• Estimation of other geometric quantities that depend on the 

Laplacian (e.g Riemannian metric) or not (e.g intrinsic 
dimension).
• Regression on manifolds via Gaussian Processes or Laplacian

regularization.

𝒓%	for embedding Spectra of galaxies
N=670,000, r=3750 dimensions (www.sdss.org)

GC Algorithm: Optimizing the Laplacian 
Input Data {𝑥(, 𝑥*, …	𝑥,}, dimension 𝑑’, pow=1,−1
For each 𝜖
1.Estimate the Laplacian  induced by 𝑟
2.For each data point 𝑥3 (in a subsample)

1. Weights 𝑤5 	= 	𝐾8(𝑥3, 𝑥5) for all 𝑥5
2. Project neighbors of 𝑥3 on tangent subspace 

3. Treat 𝑌 as an embedding of 𝑋. Estimate the R. metric for 𝑌

4. But 𝑌 should be isometric to 𝑋. Hence 𝐻 should be the 
identity matrix. Penalize the difference.

Output 𝑟̂	that minimizes distortion 𝐷

Measures departure from isometry, 
i.e. geometric consistency
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Heat Kernels, Laplacians, and Geometry
• Heat Kernel

𝑊35 = exp
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• Radius parameter: 𝑟
• Compute the Graph Laplacian:
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• Then
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• Assume a Riemannian Manifold (ℳ, 𝑔)

• Riemannian Metric, 𝑔, encodes geometry 
e.g. volume element is det 𝐺 𝑋�

• 𝐻 𝑝 O5 = 	
(
*
	Δℳ 𝑥O − 𝑥O 𝑝 𝑥3 − 𝑥3 𝑝 |RSR(T)

• Optimize 𝑟 for geometric consistency

Radius Estimate for Galaxy Spectra.
Left: GC results for d’ = 1, 2, 3; 3 ⋅ 𝑟opt		=	66
Right: log-log plot of radius vs avg. # nbrs;
Indicates d=3 at 𝑟opt = 22

Using 𝒓%	for dimension estimation (with [5])
• Intrinsic dimension is 

estimated by the eigengap
of Local SVD with radius 𝑟̂. 

• Upper left: hourglass data
• Upper right: 𝑟̂ estimates as 

the minimizer of distorsion.
• Lower left: avg. singular 

values versus radii.
• Lower right: histogram of 

estimated dimensions on 
each points.


