
On Dynamic Network Models and Application to Causal Impact
Yu-Chia Chen 1 Avleen S. Bijral 2 Juan Lavista Ferres 2

1University of Washington  yuchaz@uw.edu 2Microsoft  {avbijral, jlavista}@microsoft.com

Introduction & RelatedWorks

Introduction Stochastic block model (SBM) is a commonly used model for networks and can be
estimatedby variousmethods. Dynamic extensions of SBMaremuchharder to estimate, especially
in the large scale setting. We propose a scalable method for this problem and introduce the novel
problem of estimating impact of external events on networks.

Degree-corrected stochastic block model (DC-SBM) [2] Given the observed unweighted adja-
cency matrix A and the labels c, edges e = (i, j) are drawn i.i.d in Bernoulli trial with probability
Pci,cj corrected by degree heterogeneity parameterϑ. In mathematical terms, the expected values
of an edge given the labels c is

E[Aij|c] = ϑiϑjPci,cj (1)

MLE of (i) P is equal to the number success trial with appropriate normalization, i.e., Plk ∝∑
ij Aij1(ci = l, cj = k), and (ii) ϑ is proportional to the degree of node i, i.e., ϑi ∝ deg(i), with

an identifiability constraint
∑
i ϑi1(ci = l) = 1 ∀ l ∈ [K].

Relatedworks – Dynamic networkmodels

Latent variable model (Sarkar &Moore, 2006; Sewell & Chen, 2015).

State spacemodel for dynamic SBM (Yang et al., 2011; Xu &Hero, 2014 [3]).

Low rank sparse optimization (Bao &Michailidis, 2018).

The proposed method scales well because (i) model on pseudo-observation block sums B, (ii) effi-
cient relabeling stepO(K3) and (iii) using SGD in solving optimization problem which provides us
with advantage overMCMCbased approaches.

Relatedwork – Causal impact on graphs

Experimentation in networks (Basse & Airoldi, 2018; Gui et al., 2015; Sussman & Airoldi, 2017).

Estimating causal impact of peer influence in networks (Toulis & Kao, 2013).

Change point detection in networks data (De Ridder et al., 2016; Peel & Clauset, 2015).

We are interested inmodeling out the impact of the exogenous event from the network generation
dynamics. To the best of our knowledge, we are not aware of work that tackles this problem.

Conditional Pseudo-likelihood (SPL) [1]

The SPL method simplifies the combinatorial estimation of a block model by modeling instead the
pseudo-observation block sums B(e) = A1(e) ∈ RN×K computed using an initialization of the
community membership e. The graphical representation of SPL model can be found in Figure 1,
with the corresponding likelihood function is,

ℓ(π,Θ; B) =
N∑
i=1

log

 K∑
l=1

πl exp

 K∑
q=1

biq log θlq

 (2)

Figure 1.Graphical representation of SPL.

The optimalπ,Θ parameter given e can be obtained by EM algorithm. Upon obtaining theMLE of
π,Θ, one can update ĉ by the posterior distributionψil = Pr(ci = l|bi,π,Θ) as in (3).

ψil =
πl exp(

∑
q biq log θlq)∑

k πk exp(
∑
q biq log θlq)

(3)

The author proposed to initialize the
parameters as in (4).

π = n/N ,

Λ = diag(n)P ,

Θ = D−1
Λ Λ

where
[
diag(D−1

Λ )
]
l =

∑
k λlk

(4)

Algorithm 1:Conditional Pseudo-likelihood algorithm
CPL_static (A, e,M)
Set ĉ0← e, initializeπ,Λ using eq. (4) with e
form = 1 : M do

Update block sumsBwith estimated labels ĉm−1
while not converge do

E Step: Compute posteriorΨ using eq. (3)

Mstep: π̂l =
∑
iψil/N ; θ̂lk =

∑
iψilbik∑
iψildi

end
Update the labels: [ĉm]i = arg maxk ψik

end
Return: ĉ, Θ̂, π̂

Dynamic Pseudo-likelihood (DPL) Estimation

Parameters π andΛ govern the underlying structure of the observed network. A natural dynamic
extension of SPL model is to propose stochastic processes on these two parameters, i.e., random
walk priors onπ andΛ, that capture some underlying intuition of how the networks evolve.

The graphical representation of the proposed stochastic processes is shown in Figure 2, and the
corresponding randomwalk priors onπ1:T andΛ1:T are

Pr
(
ζtl

∣∣ ζt−1
l ;σ1

)
= N

(
ζtl ; ζ

t−1
l , σ1

)
∀ l ∈ [K]

Pr
(
λtlk

∣∣ λt−1
lk ;σ2

)
= NT

(
λtlk;λ

t−1
lk , σ2, 0,∞

)
∀ l, k ∈ [K]

(5)

DPL (cont.) & Relabeling

MAP estimator π̂1:T , Λ̂1:T is the minimizer of (6) with χ1 = 1
2σ2

1
and χ2 = 1

2σ2
2
.

f (ζ1:T ,Λ1:T |B1:T ;χ1, χ2) = −
T∑
t=1

ℓ(πt,Θt; Bt) + χ1

T∑
t=2
∥ζt − ζt−1∥2 + χ2

T∑
t=2
∥Λt −Λt−1∥2F

s.t. λlk ≥ 0 for all l, k
with ℓ from eq. (2),π = SoftMax(ζ) andΘ from eq. (4).

(6)

Figure 2.Graphical representation of
the proposed DPLmodel.

Algorithm 2:Dynamic Pseudo-likelihood algorithm
DPL_estimate (A1:T , e1:T ,M, χ1, χ2)
Set ĉ1:T

0 = e1:T

form = 1 : M do
Initializeπ1:T ,Λ1:T with ĉ1:T

m−1 using eq. (4)
UpdateB1:T with ĉ1:T

m−1
Solve eq. (6): ζ̂1:T , Λ̂1:T = arg min f (ζ1:T ,Λ1:T |B1:T ;χ1, χ2)
Compute posteriorΨ1:T using eq. (3)
Ψ1:T = relabel_with_posterior(Ψ1:T )
▷ algorithm 3
Update the labels: [ĉtm]i = arg maxk ψtik

end
ĉ1:T = ĉ1:T

M ; Update parameter π̂1:T , Λ̂1:T with eq. (4)
Return: ĉ1:T , Λ̂1:T , π̂1:T

Permutations & relabeling

Global permutation: labels of different time
steps are defined consistently (up to a
permutation of labels globally).

Local permutation: labels of different time
steps are not defined consistently.

νt∗ = arg min
ν

N∑
i=1

KL
(
ψt−1
i,ν(k)

∥∥ ψti,k) (7)

Can be cast into an assignment problem:

min
x

∑
l,k

Clkxlk s.t.
∑
l

xlk = 1;
∑
k

xlk = 1 (8)

Algorithm 3: Relabel with posterior
relabel_with_posterior (Ψ1:T )
for t = 2 : T do

νt∗ = arg minν
∑N
i KL

(
ψt−1
i,ν(k)

∥∥ ψti,k)
Global mapping νtg(k) = νt∗(νt−1

g (k))
▷ ν1

g is identity
for k = 1 : K do

[Ψt
∗]·,k = Ψt

·,νtg(k)
end

end
Return:Aligned posteriorΨ1:T

∗

Causal Impact

Level shift estimation An external event at t = T0 causes a level shift inΛ.

Pr
(

Λ1:T
)

=
∏
t̸=T0

Pr
(

Λt
∣∣Λt−1

)
(9)

Drift estimation An external event at t = T0 changes the increasing/decreasing trend inΛ.

Pr
(
λtll

∣∣ λt−1
ll ;σ2, δl

)
= NT

(
λtll;λ

t−1
ll + δl, σ2, 0,∞

)
∀ l ∈ [K] (10)

With the abovemodification, the objective shown in (6) becomes,

f (ζ1:T ,Λ1:T |B1:T ;χ1, χ2) = −
T∑
t=1

ℓ(πt,Θt; Bt) + χ1

T∑
t=2
∥ζt − ζt−1∥2

+χ2

T0−1∑
t=2
∥Λt −Λt−1 − diag(δ1)∥2F + χ2

T∑
t=T0+1

∥Λt −Λt−1 − diag(δ2)∥2F

s.t. λlk ≥ 0 for all l, k; withπ = SoftMax(ζ) andΘ from eq. (4).

(11)

Impact assessment and re-sampling

The uncertainty bandsBα of the counterfactualmodelW with significance level α allows us to
determine whether the change of the network parameters are significant.

Based on the aforementioned DPLmodel, we propose a resample procedure to estimate the
uncertainty bandBα by repeatedly generating J resamples of series of networks corresponding
to impact model I and the counterfactual modelW .

A point estimate of the edge probability matrices of model I can be obtained by the average of
the resampled data, while the uncertainty band of modelW can be constructed from the α/2-th
to 1− α/2-th quantile of the empirical distribution of the resampled data.

Experiments

Dataset name N K T Dataset name N K T T0

Synth8000 8,000 30 60 Synth8000Jump/Drift 8,000 2 30 20
MITReal (Eagle & Pentland, 2006) 94 2 37 MITRealFall 94 2 21 14
MathO (Paranjape et al., 2017) 24,818 15 79 EnronMail (Klimt & Yang, 2004) 184 7 100 68

DPLmodel assessment

(a) Synth8000 – Local NMI vs. time (b) Synth8000 –Modularity vs. time (c) Synth8000 – 2D histogram of labels

(d) MITReal – Local NMI vs. time (e) MITReal –Modularity vs. time (f) MITReal – 2D histogram of labels

(g) MathO –Modularity vs. time.

precision recall F1 NMI

DPL 0.134 0.983 0.236 0.744
sDPL 0.107 0.986 0.194 0.552
SPL [1] 0.040 0.969 0.077 0.013
SPC 0.040 0.967 0.077 0.009

(h) Synth8000 –Global metrics.

Global NMI

DPL 0.399
SPL 0.327
SPC 0.032
DSBM [3] 0.377

(i) MITReal –Global NMI scores.

Figure 3. Experiment result – DPLmodel.

Causal impact model

(a) Synth8000Jump – EstimatedPmatrix. (b) Synth8000Drift – box plot of drifts δ1, δ2. (c) Synth8000Drift – EstimatedPmatrix.

(d) MITRealFall – estimatedPmatrix. (e) EnronMail – estimatedPmatrix.

Figure 4. Experiment results – causal impact.
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