

Introduction & Related Works

Introduction Stochastic block model (SBM) is a commonly used model for networks and can be estimated by various methods. Dynamic extensions of SBM are much harder to estimate, especially in the large scale setting. We propose a scalable method for this problem and introduce the novel problem of estimating impact of external events on networks.

Degree-corrected stochastic block model (DC-SBM) [2] Given the observed unweighted adjacency matrix **A** and the labels **c**, edges e = (i, j) are drawn i.i.d in Bernoulli trial with probability P_{c_i,c_i} corrected by degree heterogeneity parameter ϑ . In mathematical terms, the expected values of an edge given the labels ${f c}$ is

$$\mathbb{E}[\mathbf{A}_{ij}|\mathbf{c}] = \vartheta_i \vartheta_j P_{c_i,c_j}$$

MLE of (i) **P** is equal to the number success trial with appropriate normalization, i.e., $P_{lk} \propto$ $\sum_{ij} A_{ij} 1(c_i = l, c_j = k)$, and (ii) ϑ is proportional to the degree of node *i*, i.e., $\vartheta_i \propto \deg(i)$, with an identifiability constraint $\sum_i \vartheta_i 1(c_i = l) = 1 \forall l \in [K].$

Related works – Dynamic network models

- Latent variable model (Sarkar & Moore, 2006; Sewell & Chen, 2015).
- State space model for dynamic SBM (Yang et al., 2011; Xu & Hero, 2014 [3]).
- Low rank sparse optimization (Bao & Michailidis, 2018).

The proposed method scales well because (i) model on pseudo-observation block sums \mathbf{B} , (ii) efficient relabeling step $\mathcal{O}(K^3)$ and (iii) using SGD in solving optimization problem which provides us with advantage over MCMC based approaches.

Related work – Causal impact on graphs

- Experimentation in networks (Basse & Airoldi, 2018; Gui et al., 2015; Sussman & Airoldi, 2017).
- Estimating causal impact of peer influence in networks (Toulis & Kao, 2013).
- Change point detection in networks data (De Ridder et al., 2016; Peel & Clauset, 2015).

We are interested in modeling *out* the impact of the exogenous event from the network generation dynamics. To the best of our knowledge, we are not aware of work that tackles this problem.

Conditional Pseudo-likelihood (SPL) [1]

The SPL method simplifies the combinatorial estimation of a block model by modeling instead the pseudo-observation block sums $\mathbf{B}(e) = \mathbf{A}\mathbf{1}(e) \in \mathbb{R}^{N \times K}$ computed using an initialization of the community membership e. The graphical representation of SPL model can be found in Figure 1, with the corresponding likelihood function is,

$$\ell(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathbf{B}) = \sum_{i=1}^{N} \log \left(\sum_{l=1}^{K} \pi_l \exp \left(\sum_{q=1}^{K} b_{iq} \log \theta_{lq} \right) \right)$$
(2)
Figure 1 G

The optimal π, Θ parameter given e can be obtained by EM algorithm. Upon obtaining the MLE of $\boldsymbol{\pi}, \boldsymbol{\Theta}$, one can update $\hat{\mathbf{c}}$ by the posterior distribution $\psi_{il} = \Pr(c_i = l | \mathbf{b}_i, \boldsymbol{\pi}, \boldsymbol{\Theta})$ as in (3).

$$\psi_{il} = \frac{\pi_l \exp(\sum_q b_{iq} \log \theta_{lq})}{\sum_k \pi_k \exp(\sum_q b_{iq} \log \theta_{lq})} \quad (3)$$

The author proposed to initialize the parameters as in (4).

$$\begin{aligned} \boldsymbol{\pi} &= \mathbf{n}/N \,, \\ \boldsymbol{\Lambda} &= \text{diag}(\mathbf{n})\mathbf{P} \,, \\ \boldsymbol{\Theta} &= \mathbf{D}_{\mathbf{\Lambda}}^{-1}\boldsymbol{\Lambda} \\ \end{aligned}$$
(4) where $\left[\text{diag}(\mathbf{D}_{\mathbf{\Lambda}}^{-1})\right]_{l} = \sum_{k} \lambda_{lk}$

 $CPL_static(\mathbf{A}, \mathbf{e}, M)$ Set $\hat{\mathbf{c}}_0 \leftarrow \mathbf{e}$, initialize $\boldsymbol{\pi}, \boldsymbol{\Lambda}$ using eq. (4) with \mathbf{e} for m = 1 : M do Update block sums **B** with estimated labels $\hat{\mathbf{c}}_{m-1}$ while not converge do

E Step: Compute posterior
$$\Psi$$
 using eq. (3)
M step: $\hat{\pi}_l = \sum_i \psi_{il}/N$; $\hat{\theta}_{lk} = \frac{\sum_i \psi_{il} b_{ik}}{\sum_i \psi_{il} d_i}$
end
Update the labels: $[\hat{\mathbf{c}}_m]_i = \arg \max_k \psi_{ik}$
end

Return: $\hat{\mathbf{c}}, \hat{\boldsymbol{\Theta}}, \hat{\boldsymbol{\pi}}$

Dynamic Pseudo-likelihood (DPL) Estimation

Parameters π and Λ govern the underlying structure of the observed network. A natural dynamic extension of SPL model is to propose stochastic processes on these two parameters, i.e., random walk priors on π and Λ , that capture some underlying intuition of how the networks evolve.

The graphical representation of the proposed stochastic processes is shown in Figure 2, and the corresponding random walk priors on $oldsymbol{\pi}^{1:T}$ and $oldsymbol{\Lambda}^{1:T}$ are

$$\Pr\left(\zeta_{l}^{t} \mid \zeta_{l}^{t-1}; \sigma_{1}\right) = \mathcal{N}\left(\zeta_{l}^{t}; \zeta_{l}^{t-1}, \sigma_{1}\right) \forall l \in [K]$$
$$\Pr\left(\lambda_{lk}^{t} \mid \lambda_{lk}^{t-1}; \sigma_{2}\right) = \mathcal{N}_{T}\left(\lambda_{lk}^{t}; \lambda_{lk}^{t-1}, \sigma_{2}, 0, \infty\right) \forall l, k \in [K]$$

On Dynamic Network Models and Application to Causal Impact

Yu-Chia Chen¹

¹University of Washington 🖂 yuchaz@uw.edu 🦳 ²Microsoft 🖂 {avbijral, jlavista}@microsoft.com

DPL (cont.) & Relabeling

MAP estimator $\hat{\pi}^{1:T}$, $\hat{\Lambda}^{1:T}$ is the minimizer of (6) with χ_1

$$f(\boldsymbol{\zeta}^{1:T}, \boldsymbol{\Lambda}^{1:T} | \boldsymbol{B}^{1:T}; \chi_1, \chi_2) = -\sum_{t=1}^T \ell(\boldsymbol{\pi}^t, \boldsymbol{\Theta}^t; \boldsymbol{B}^t) + \chi_1 \sum_{t=2}^T \ell(\boldsymbol{\Phi}^t, \boldsymbol{\Theta}^t; \boldsymbol{\Phi}^t; \boldsymbol{B}^t) + \chi_1 \sum_{t=2}^T \ell(\boldsymbol{\Phi}^t, \boldsymbol{\Theta}^t; \boldsymbol{\Phi}^t; \boldsymbol{\Phi}^t; \boldsymbol{\Phi}^t) + \chi_1 \sum_{t=2}^T \ell(\boldsymbol{\Phi}^t, \boldsymbol{\Phi}^t; \boldsymbol{$$

s.t. $\lambda_{lk} \geq 0$ for all l, kwith ℓ from eq. (2), $\boldsymbol{\pi} = \text{SoftMax}(\boldsymbol{\zeta})$ and Θ from eq. (4).

c^{t-1} • • • ... $\Theta = \mathsf{D}_{\Lambda}^{-1} \Lambda$ \rightarrow

 $\pi = \text{Softmax}(\zeta)$

Figure 2. Graphical representation of the proposed DPL model.

Permutations & relabeling

- Global permutation: labels of different time steps are defined consistently (up to a permutation of labels globally).
- Local permutation: labels of different time steps are not defined consistently.

$$\nu_*^t = \underset{\nu}{\operatorname{arg\,min}} \sum_{i=1}^N \mathsf{KL}\left(\psi_{i,\nu(k)}^{t-1} \parallel \psi_{i,k}^t\right) \quad (7)$$

Can be cast into an assignment problem:

$$\min_{x} \sum_{l,k} C_{lk} x_{lk} \text{ s.t. } \sum_{l} x_{lk} = 1; \sum_{k} x_{lk} = 1$$
(8)

Causal Impact

Level shift estimation An external event at $t = T_0$ causes a level shift in Λ .

$$\Pr\left(\mathbf{\Lambda}^{1:T}\right) = \prod_{t \neq T_0} \Pr\left(\mathbf{\Lambda}^t \mid \mathbf{\Lambda}^{t-1}\right) \tag{9}$$

$$\Pr\left(\lambda_{ll}^{t} \mid \lambda_{ll}^{t-1}; \sigma_{2}, \delta_{l}\right) = \mathcal{N}_{T}\left(\lambda_{ll}^{t}; \lambda_{ll}^{t-1} + \delta_{l}, \sigma_{2}, 0, \infty\right) \,\forall \, l \in [K]$$

$$(10)$$

With the above modification, the objective shown in (6) becomes,

$$f(\boldsymbol{\zeta}^{1:T}, \boldsymbol{\Lambda}^{1:T} | \boldsymbol{B}^{1:T}; \chi_1, \chi_2) = -\sum_{t=1}^{T} \ell(\boldsymbol{\pi}^t, \boldsymbol{\Theta}^t; \boldsymbol{B}^t) + \chi_1 \sum_{t=2}^{T} \|\boldsymbol{\zeta}^t - \boldsymbol{\zeta}^{t-1}\|^2 + \chi_2 \sum_{t=2}^{T_0-1} \|\boldsymbol{\Lambda}^t - \boldsymbol{\Lambda}^{t-1} - \operatorname{diag}(\boldsymbol{\delta}_1)\|_F^2 + \chi_2 \sum_{t=T_0+1}^{T} \|\boldsymbol{\Lambda}^t - \boldsymbol{\Lambda}^{t-1} - \operatorname{diag}(\boldsymbol{\delta}_2)\|_F^2$$
(11)
s.t. $\lambda_{lk} \ge 0$ for all l, k ; with $\boldsymbol{\pi} = \operatorname{SoftMax}(\boldsymbol{\zeta})$ and $\boldsymbol{\Theta}$ from eq. (4).

Impact assessment and re-sampling

- The uncertainty bands \mathcal{B}_{α} of the *counterfactual* model \mathcal{W} with significance level α allows us to determine whether the change of the network parameters are significant.
- Based on the aforementioned DPL model, we propose a resample procedure to estimate the uncertainty band \mathcal{B}_{α} by repeatedly generating J resamples of series of networks corresponding to impact model \mathcal{I} and the counterfactual model \mathcal{W} .
- A point estimate of the edge probability matrices of model \mathcal{I} can be obtained by the average of the resampled data, while the uncertainty band of model \mathcal{W} can be constructed from the $\alpha/2$ -th to $1 - \alpha/2$ -th quantile of the empirical distribution of the resampled data.

(1)

Figure 1. Graphical representation of SPL.

Algorithm 1: Conditional Pseudo-likelihood algorithm

Avleen S. Bijral² Juan Lavista Ferres²

$_{1} = \frac{1}{2\sigma_{1}^{2}}$ and $\chi_{2} = \frac{1}{2\sigma_{2}^{2}}$.
$\hat{\boldsymbol{\zeta}}_{t} \ \boldsymbol{\zeta}^{t} - \boldsymbol{\zeta}^{t-1} \ ^{2} + \chi_{2} \sum_{t=2}^{T} \ \boldsymbol{\Lambda}^{t} - \boldsymbol{\Lambda}^{t-1} \ _{F}^{2}$
k

	(6)
seudo-likelihood algorithm	
$T^{T}, M, \chi_1, \chi_2)$	

Initialize $oldsymbol{\pi}^{1:T}$, $oldsymbol{\Lambda}^{1:T}$ with $\hat{f c}_{m-1}^{1:T}$ using eq. (4) Solve eq. (6): $\hat{\boldsymbol{\zeta}}^{1:T}$, $\hat{\boldsymbol{\Lambda}}^{1:T}$ = arg min $f(\boldsymbol{\zeta}^{1:T}, \boldsymbol{\Lambda}^{1:T} | \mathbf{B}^{1:T}; \chi_1, \chi_2)$

 $\hat{\mathbf{c}}^{1:T} = \hat{\mathbf{c}}_{M}^{1:T}$; Update parameter $\hat{\boldsymbol{\pi}}^{1:T}$, $\hat{\mathbf{\Lambda}}^{1:T}$ with eq. (4)

Algorithm 3: Relabel with posterior relabel_with_posterior ($\mathbf{\Psi}^{1:T}$) for $t = 2 : T \operatorname{do}$ $\nu_*^t = \arg\min_{\nu} \sum_{i}^N \mathsf{KL}\left(\psi_{i,\nu(k)}^{t-1} \| \psi_{i,k}^t\right)$ Global mapping $\nu_q^t(k) = \nu_*^t(\nu_q^{t-1}(k))$ $\triangleright \nu_a^1$ is identity for $k = 1 : K \operatorname{do}$ $[\mathbf{\Psi}^t_*]_{\cdot,k} = \mathbf{\Psi}^t_{\cdot,
u^t_a(k)}$ end

Return: Aligned posterior $\Psi^{1:T}_*$

Drift estimation An external event at $t = T_0$ changes the increasing/decreasing trend in Λ .

Dataset name	N	K	T	Dataset name	N	K	Т	T_0
Synth8000	8,000	30	60	Synth8000Jump/Drift	8,000	2	30	20
MITReal (Eagle & Pentland, 2006)	94	2	37	MITRealFall	94	2	21	14
MathO (Paranjape et al., 2017)	24,818	15	79	EnronMail (Klimt & Yang, 2004)	184	7	100	68

DPL model assessment

(g) Math0 - Modularity vs. time.

Figure 3. Experiment result – DPL model.

Causal impact model

[1] Arash A Amini, Aiyou Chen, Peter J Bickel, and Elizaveta Levina. Pseudo-likelihood methods for community detection in large sparse networks. The Annals of Statistics, 41(4):2097-2122, 2013.

- Processing, 8(4):552–562, 2014.

Microsoft

Experiments

	precision	recall	F1	NMI
_	0.134	0.983	0.236	0.744
	0.107	0.986	0.194	0.552
.[1]	0.040	0.969	0.077	0.013
	0.040	0.967	0.077	0.009

(h) Synth8000 – Global metrics.

(i) MITReal – Global NMI scores.

Figure 4. Experiment results – causal impact.

References

[2] Brian Karrer and Mark E J Newman. Stochastic blockmodels and community structure in networks. Physical review E, 83(1):16107, 2011. [3] Kevin S Xu and Alfred O Hero. Dynamic stochastic blockmodels for time-evolving social networks. *IEEE Journal of Selected Topics in Signal*