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ABSTRACT
Dynamic extensions of Stochastic block model (SBM) are of im-

portance in several fields that generate temporal interaction data.

These models, besides producing compact and interpretable net-

work representations, can be useful in applications such as link

prediction or network forecasting. In this paper we present a condi-

tional pseudo-likelihood based extension to dynamic SBM that can

be efficiently estimated by optimizing a regularized objective. Our

formulation leads to a highly scalable approach that can handle

very large networks, even with millions of nodes. We also extend

our formalism to causal impact for networks that allows us to quan-

tify the impact of external events on a time dependent sequence

of networks. We support our work with extensive results on both

synthetic and real networks.
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•Computingmethodologies→Unsupervised learning;Max-
imumaposteriorimodeling; •Mathematics of computing→
Stochastic processes.
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1 INTRODUCTION
Network analysis is now a staple in many domains including com-

puter science, social sciences and statistics. The main driver behind

this growth has been the ubiquity of connection data, e.g., in the

form of social, ecological or biological interactions. These interac-

tions when modeled as edges with the entities as nodes naturally

lead to a network representation.

One of the more prominent tasks in network analysis is the

study of more compact representation of networks to aid in various

applications. The model based approaches include random graph
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models [13], precision matrix based method [1, 2, 50] or embedding

based methods [14, 18, 38]. A popular generative representation of

a network is a Stochastic block model (SBM) [20]. In this approach

edges are drawn i.i.d in Bernoulli trial with probability Pci ,c j for
blocks or communities ci , c j ∈ {1, ...K} that nodes i and j belong
to. Given the observed unweighted adjacency matrix A, the ex-

pected values of an edge given the labels c is E[Ai j |c] = Pci ,c j .
This model captures the intuition that nodes in the same block

share similar connectivity. A more general Degree-corrected SBM

(DC-SBM) [24] was proposed to deal with degree heterogeneity

wherein E[Ai j | c] = ϑiϑjPci ,c j , with an identifiability constraint∑
i ϑi1(ci = l) = 1 ∀ l ∈ {1, · · · ,K}. Several methods exist to

estimate static SBM – spectral [22, 31], Bayesian approaches in-

clude [2, 13, 33]. Alternatively, profile likelihood [7] and method of

moments [8] have also been proposed.

More recently, models for time dependent networks have ap-

peared in the literature [4, 15, 30, 46, 48]. Besides standard network

modeling applications many other problems can be modeled as dy-

namic networks (e.g., face interaction [5]). The underlying intuition

behind these methods is that the evolution of networks captures

information about changes in the structure that the static model

cannot. One can then extend the idea of identifying communities or

blocks and model changes in the dynamic setting. This is of great

importance in various applications such as link prediction [23, 40]

or future network forecasting [26]. However a central challenge

in applications is often the scale of the networks – each network

in the sequence can be of the order of tens of millions of nodes.

A fundamental challenge in estimating block models is that opti-

mizing over label assignments is NP-hard and most existing work

consists of Bayesian models that depend on intensive sampling

based inference. This difficulty is further compounded when there

are several time-dependent networks. For static SBM some recent

methods [3, 17, 39] can scale up to a few million nodes but in the

dynamic setting we are not aware of methods that work for very

large networks.

In this paper we develop a highly scalable dynamic extension to

a static profile likelihood (SPL) method [3] that works well for even

sparse networks. This extension is enabled by modeling the param-

eters of the SPL method as stochastic processes, which can then be

estimated in an efficient regularization framework. Moreover, we

present a novel extension of our framework to model and estimate

significant structural changes that can occur in networks due to

events. This can be of great importance in trying to understand

causal external influence on network generation dynamics. For e.g.

in the Enron email network analysis presented in Xu and Hero [47],

the publicizing of the financial scandal caused email traffic to peak

between the CEO and company presidents and as such, one may

be interested in quantifying the impact of this exogenous effect

on the network dynamics. This perspective can also be thought of
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as an extension of the causal impact methodology for time series

introduced in Box and Tiao [9] to a network sequence.

1.1 Related Work
Dynamic network models has been around for a little over a decade

or so and some of the early works were focused on latent variable

models [41, 42]. The latent variable approach, while useful, is harder

to interpret and does not usually scale well to very large scale net-

works. See Kim et al. [25] for an extensive survey. Consequently,

dynamic SBM approaches have appeared in the literature. A state

space model for dynamic SBM was proposed in Yang et al. [48],

wherein the block membership for nodes is modeled as a latent

variable generated by a Markov process. The authors propose a

MCMC technique for estimation but this approach does not scale

to even moderately large networks. In Xu and Hero [47], the au-

thors propose a modification of the Yang et al. [48] model in that,

instead of modeling the block membership directly, the authors

propose a linear dynamicmodel for the logit transformed block tran-

sition probabilities. This model is then estimated using an extended

Kalman filter and a local search method to align block member-

ship across time steps (roughly speaking). This approach scales as

O(|Et | + K6 + |V t |K5l) where |V t | is the number of nodes, K is

the number of blocks and l is the number of local search iterations.

Xu [46] extended the method to allow for the absence/presence

of an edge across/within blocks at time t to depend on a previous

state. From a model perspective this is an improvement since it

captures the persistence/absence of edges across time compared to

the possibly unrealistic assumption of conditional independence of

all past networks given the current state. However, computationally

both Xu [46], Xu and Hero [47] have a prohibitive cost even for

moderately large networks. In contrast, our method scales well due

to multiple reasons, a) the SPL approach compresses the adjacency

matrix into row sums corresponding to blocks and efficiently opti-

mizes a much simpler likelihood model, b) our relabeling step (for

label alignment across time) scales as O(K3) which is significantly

faster than existing approaches and c) our implementation depends

on stochastic gradient descent which gives us a considerable ad-

vantage over MCMC based approaches.

More recently, Bao and Michailidis [4] proposed a community

detection algorithm for time dependent networks that decomposes

the graph adjacency sequence into a low rank, sparse and a noise

component. These are estimated using an optimization problem

that enforces sparsity and penalizes large changes in the low rank

components over time. This approach is similar in spirit to ours, in

that we also penalize large changes in the network parameterization

but the optimization problem in Bao and Michailidis [4] is much

more computationally intensive. On the theoretical front some

results for dynamic network estimation appeared in Pensky [36],

Pensky and Zhang [37].

1.2 Contribution
Our main contributions in this paper can be summarized as follows

(1) We propose a novel dynamic pseudo-likelihood extension

to stochastic block models for networks. The estimation is

posed as a regularized optimization problem which is solved

using an efficient stochastic gradient descent (sgd) approach.

(2) Unlike existing work, our approach is highly scalable and

works for very large networks. We are able to work with

networks with tens of millions of nodes.

(3) We also present a novel framework for causal impact that

extends the classical time series based intervention analysis

methodology [9, 10] to networks. This allows us to separate

exogenous artifacts of impact of events from the intrinsic

network sequence generation model.

(4) Finally we show empirical results on several synthetic and

real networks of different sizes.

2 ALGORITHM
2.1 Notation and Problem Formulation
Throughout this paper, matrices and vectors are denoted using bold

letters. The super script denotes the matrices/vectors at the t-th
snap shot, e.g., the t-th adjacency matrix to be At

. A collection of

all matrices/vectors across the time is denoted as A1:T
. For simplic-

ity, [K] represents the set {1, · · · ,K}. A more extensive table of

notation is provided in Table 3 in the appendix. In the interest of

completeness we first propose a problem statement

Definition 1 (Problem formulation). Given a sequences of
graphsGt (V t ,Et ) ∀ t ∈ [T ], with the corresponding un-weighted ad-
jacency matrices A1:T and vertex size (fixed over time), |V t | = N ∀ t .
Let K be the number of communities in the graph and assume that the
sequence of graphs is generated from a stochastic block model with
underlying communities c1:T with ct ∈ [K]N ∀ t , probability matri-
ces P1:T and degree heterogeneity parameters ϑ1:T . We are interested
in estimating the underlying communities ĉ1:T and the evolution of
edge probability matrices P̂1:T over time.

For networks with different vertices sizes across time, one can

always create a new series of graph with fixed vertices size N =
maxt |V

t | by adding isolated nodes. Throughout the paper. we will

use the term community and block interchangeably.

2.2 Background
The proposed dynamic pseudo-likelihood (DPL) algorithm extends

the conditional pseudo-likelihood (SPL) approach for DC-SBM pro-

posed in Amini et al. [3]. Given a static unweighted graph G(V ,E)
of node size |V | = N with A ∈ RN×N as the unweighted adjacency

matrix, the SPL method simplifies the combinatorial estimation of

a block model by modeling instead the pseudo-observation block
sums B(e) = A1(e) ∈ RN×K computed using an initialization of

the community membership e. Here 1(e) is a 0 − 1 label indicator
matrix, a N ×K matrix where the il-th entry is 1 if the initial node i
belongs to community l . Note that in Amini et al. [3], many heuris-

tics have been proposed to obtain such initialization of labels e.
Throughout the paper, we used the spectral clustering with pertur-

bation to obtain the initial labels. Count vector n(e) and a count

matrix S(e), represent the number of nodes of community l and the
number of edges between block l and k , respectively, can be defined

as: [n(e)]l =
∑
i 1(ei = l) and [S(e)]lk = nl (e)nk (e) for l , k and

[S(e)]l l = nl (e)(nl (e)−1). Themaximum likelihood estimator (MLE)

for probability matrix P [24] is P(e) = (1(e)T B(e)) ⊘ S(e) with ⊘
represents the Hadamard (element-wise) division of two matrices.
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The MLE for degree parameter ϑ is [ϑ(e)]i ∝ di with an identifiably
constraint

∑
i ϑi1(ci = l) = 1 ∀ l ∈ [K].

Given the degree parameter ϑ , the model assumes that block

sums of node i , Bi are generated from a mixture of multinomial

distributions, with the probability of membership in community l
is πl . Given the community label l of node i , Bi is sampled from a

multinomial distribution where the total number of trials is ϑi and
event probability vector is θl . The likelihood function is then (1).

ℓ(π ,Θ;B) =
N∑
i=1

log

©­«
K∑
l=1

πl exp
©­«
K∑
q=1

biq logθlq
ª®¬ª®¬ (1)

Because of the simplicity of the likelihood function, we have a

closed form update of EM algorithm. Therefore, the optimal π ,Θ
parameter given an initial guess of the communities structure e can

be obtained by several EM steps until convergence. Upon obtaining

the MLE of π and Θ, one can update the community structure by

the posterior distribution as in (2).

ψil = Pr(ci = l |bi ,π ,Θ) =
πl exp(

∑
q biq logθlq )∑

k πk exp(
∑
q biq logθlq )

(2)

The maximizer class of the posterior distribution of node i is
the updated block which i belongs to. With the updated block

membership, a new pseudo-observation Block sums B can thus be

obtained. The above procedure is repeated forM outer iterations

and the class maximizer of the posterior distribution in the last is

the output of the algorithm. The author proposed to initialize the

parameters as in (3). Here Λ is a K by K matrix with its kl entry
represents the expected number of edges between community k
and l . The multinomial parameter Θ is the row-normalization of

the aforementioned edge propensity parameter Λ.

π = n/N , Λ = diag(n)P , Θ = D−1Λ Λ

where

[
diag(D−1

Λ
)
]
l =

∑
k λlk

(3)

The algorithm is summarized in Algorithm 1. For more details

the reader can refer to Amini et al. [3].

Algorithm 1: Conditional Pseudo-likelihood algorithm

1 CPL_static (A, e,M) ⇒ Return : ĉ, ˆΘ, π̂
2 Set ĉ0 ← e, initialize π , Λ using eq. (3) with e
3 form = 1 : M do
4 Update block sums B with estimated labels ĉm−1
5 while not converge do
6 E Step: Compute posterior Ψ using eq. (2)

7 M step: π̂l =
∑
i ψil /N ;

ˆθlk =
∑
i ψilbik∑
i ψildi

8 end
9 Update the labels: [ĉm ]i = argmaxk ψik

10 end

2.3 Dynamic pseudo-likelihood estimation.
In the static pseudo-likelihood model, the two parameters π and

Λ govern the underlying structure of the observed network (i.e.,

the block sums). A natural dynamic extension of such a model is to

propose stochastic processes that capture some underlying intuition

of how the networks evolve. We set randomwalk priors on π and Λ,
with the assumption that the parameters and hence the underlying

networks vary slowly over time. We will relax this assumption for

more variability in the parameter evolution in Section 3. Note that

we have the probability simplex constraint on π and Λ is entry

wise positive. For π , we introduce a hidden parameter ζ which is a

unconstrained parameter with the following prior

Pr

(
ζ tl

�� ζ t−1l ;σ1
)
= N

(
ζ tl ; ζ

t−1
l ,σ1

)
∀ l ∈ [K] (4)

π can be obtained by a SoftMax transformation of ζ , i.e., π =
SoftMax(ζ ). Λ is assumed to follow the truncated normal process

Pr

(
λtlk

�� λt−1lk ;σ2
)
= NT

(
λtlk ; λ

t−1
lk ,σ2, 0,∞

)
∀ l ,k ∈ [K] (5)

The graphical representation of parameters is shown in Figure 1.

The posterior distribution of the parameters π1:T
and Λ1:T

is

Pr(π1:T ,Λ1:T |B1:T ) ∝ Pr(B1:T |π1:T ,Λ1:T ) · Pr(π1:T ) · Pr(Λ1:T )

=

T∏
t=1

Pr(Bt |π t ,Λt ) · Pr(π t |π t−1) · Pr(Λt |Λt−1)

Figure 1: Graphical representation of the proposed DPL
model.

The maximum-a-posteriori (MAP) estimator π̂1:T , ˆΛ
1:T

is the

minimizer of the following negative log likelihood objective (6),

with χ1 =
1

2σ 2

1

and χ2 =
1

2σ 2

2

. Note that since the regularizers are the

inverse variances of the prior processes one can use intuition about

the network changes to come up with a reasonable search range. In

our implementation we use projected stochastic gradient descent

(SGD) to solve the optimization problem (6), with the proposed DPL

algorithm summarized in Algorithm 2.

f (ζ 1:T ,Λ1:T |B1:T
; χ1, χ2) = −

T∑
t=1
ℓ(π t ,Θt

;Bt )

+ χ1

T∑
t=2
∥ζ t − ζ t−1∥2

+ χ2

T∑
t=2
∥Λt − Λt−1∥2F

s.t. λlk ≥ 0 for all l ,k

with ℓ from eq. (1), π = SoftMax(ζ ) and Θ from eq. (3).

(6)
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Algorithm 2: Dynamic Pseudo-likelihood algorithm

1 DPL_estimate (A1:T , e1:T ,M, χ1, χ2)

Return : ĉ1:T , ˆΛ
1:T

, π̂1:T

2 Set ĉ1:T
0
= e1:T

3 form = 1 : M do
4 Initialize π1:T

, Λ1:T
with ĉ1:Tm−1 using eq. (3)

5 Update B1:T
with ĉ1:Tm−1

6 ˆζ 1:T , ˆΛ
1:T
= argmin f (ζ 1:T ,Λ1:T |B1:T

; χ1, χ2) in eq. (6)

7 Compute posterior Ψ1:T
using eq. (2)

8 Ψ1:T
= relabel_with_posterior(Ψ1:T

)

▷ algorithm 3

9 Update the labels: [ĉtm ]i = argmaxk ψ
t
ik

10 end

11 ĉ1:T = ĉ1:TM ; Update parameter π̂1:T
,
ˆΛ
1:T

with eq. (3)

2.4 Relabel with posterior
Static community detection algorithms are only identifiable up to

a permutation. For a temporal model, permutation between dif-

ferent time steps will result in class mismatch, which can create

mapping issues between the parameters in the proposed model. In

the dynamic community detection framework, there are two types

of permutations, which are defined as follow.

Definition 2 (Local and global permutation). For a ground
truth label sequence c1:T , there is a global permutation in a given label
sequence e1:T if for all i ∈ [N ] and t ∈ [T ], there exists a one to one
mapping νд : [K] → [K] such that cti = νд(e

t
i ). Local permutations

in a given label e1:T exist if for all i ∈ [N ], there exists a one to one
mapping ν t : [K] → [K] for time t such that cti = ν

t (eti ).

The aforementioned mapping is an issue when there is local
permutation given the estimated communities. Global permutations,
in contrast, will not create such issue. This motivates us to investi-

gate an approximately identifiable model up to global permutations.
To handle the the mapping issue, we propose to relabel the com-

munities at each outer iteration using the posterior probability Ψ.

The method is inspired by Stephens [43] and essentially finds the

permutation mapping ν t between time step t − 1 and t by solving

a Bayes risk minimization problem

ν t∗ = argmin

ν

N∑
i=1

KL

(
ψ t−1
i,ν (k )



ψ t
i,k

)
(7)

The objective aims at finding the best local mapping ν t∗ between
the labels at time t − 1 and t by aligning the posterior distribution.

Because we are interested in having an approximately identifiable

model up to global permutations, without loss of generality, we
can set the global mapping ν1д to be identity. The global mapping

at time t can be updated by the mapping of time t using ν tд(k) =

ν t∗ (ν
t−1
д (k)).

The minimizer of the objective as in (7) can be obtained in poly-

nomial time by casting it to an assignment problem. Consider two

posterior distribution Ψt−1
and Ψt

at time t − 1 and t , one can

construct a cost matrix C with Clk =
∑
i KL

(
ψ t−1
il



ψ t
ik

)
. From

this, Equation (7) can be rewritten as

min

x

∑
l,k

Clkxlk s.t.
∑
l

xlk = 1;

∑
k

xlk = 1 (8)

Where the solution x ∈ {0, 1}K×K is a binary K by K matrix

with non zero terms in the minimizer x∗lk correspond to k = ν t∗ (l).

The constraints in (8) are needed to ensure the solution to be a

one to one mapping ν t from [K] to [K]. Equation (8) is a classical

form of an assignment problem, which can be solved in O(K3) time

using Hungarian algorithm. A summary of the proposed relabeling

procedure can be found in Algorithm 3.

Algorithm 3: Relabel with posterior

1 relabel_with_posterior (Ψ1:T
)

Return :Aligned posterior Ψ1:T
∗

2 for t = 2 : T do
3 ν t∗ = argminν

∑N
i KL

(
ψ t−1
i,ν (k )



ψ t
i,k

)
4 Global mapping ν tд(k) = ν

t
∗ (ν

t−1
д (k))

▷ ν1д is identity

5 for k = 1 : K do
6 [Ψt

∗]·,k = Ψt
·,ν tд (k )

7 end
8 end

3 CAUSAL IMPACT ON NETWORKS
On March 17, 2018 the story about the Facebook-Cambridge An-

alytica data harvesting scandal came to light [11]. Subsequently,

a quit Facebook movement [21] gained momentum and a ques-

tion of interest could be the impact of this story on Facebook’s

social network. In general, a way to quantify the impact of an exter-

nal event on networks is relevant in many applications especially

where running a randomized experiment is not feasible. Please

see [6, 19, 44] for some relevant literature on experimentation in

networks. Other related tasks like estimating causal impact of peer

influence in networks [45] or change point detection in networks

data [12, 35] have also been studied. Unlike these methods, we are

interested in modeling out the impact of the exogenous event from

the network generation dynamics. To the best of our knowledge,

we are not aware of work that tackles this problem.

A simple way to inspect impact could be to compute network

metrics over time [29]. One problem with this approach is that

its not clear what the appropriate metric is and secondly global

metricsmay not capture local variations at all. For instance, consider

a network where one community gets more dense and another gets

sparse, the net effect might remain the same after an event.

We instead propose to merge community detection with impact

assessment by taking a cue from the classical intervention analysis

methodology described in Box and Tiao [9]. The idea here is to

propose a model for the impact of the event and estimate it on top of

the generative model of the network sequence. We achieve this by

surmising and then estimating a model for the impact by proposing

a modification to the stochastic process describing the parameters

of the DPL model (2). This is necessary since the original model
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assumes a smooth transition for the parameters, i.e., (4) and (5),

and hence may be insufficient to capture different transitions. More

importantly our approach is also interpretable, since the parameters

of our model have an intuitive meaning, e.g., the Λ matrix captures

the intensity of the edge formation and an external event could

alter it due to nodes dropping in or out in ways we explore next.

Note that this approach depends on the dynamic block model

assumption in definition 1 and any violations can alter the assess-

ment of the exogenous impact. It maybe feasible to test the model

for goodness-of-fit as is done in Lei et al. [28] in the static setting.

We leave this for future work.

3.1 DPL Extensions
In this section we explore two impact models and describe their

estimation procedures.

3.1.1 Level Shift Estimation. First we extend the DPL model to the

case where an external event at t = T0 causes a level jump/drop

in the edge formation intensity. In this modification, the random

walk prior remains across time step except when t = T0, when a

level increase or decrease might occur. The joint distribution can

therefore be written in the following form:

Pr

(
Λ1:T

)
=

∏
t,T0

Pr

(
Λt

�� Λt−1) (9)

Plugging this into the likelihood function results in taking out a

χ2∥Λ
T0 − ΛT0−1∥2F term from the DPL objective as in (6).

3.1.2 Drift Estimation. In the previous model, we assume that the

edge intensity across time is a random walk without drift. However,

it could be the case that the edge propensity has an increasing or

decreasing trend which in turn could be affected by an external

event, leading to a change in direction or magnitude. In this case,

drift terms in the random walk model are needed to fully capture

the evolution of the networks. One can model a random walk with

drift with the following prior distribution. Here we illustrate the

idea by adding drift term onto diagonal terms only. Therefore, the

parameters to be estimated is a vector with length K . However, it
is also possible to assume a drift on the off-diagonal terms.

Pr

(
λtl l

�� λt−1l l ;σ2,δl

)
= NT

(
λtl l ; λ

t−1
l l + δl ,σ2, 0,∞

)
∀ l ∈ [K]

(10)

After combining the above two extensions of the model, one can

write down the following joint distribution of Λ1:T
, with the drift

term before T0 to be δ1 while the drift term after T0 to be δ2.

Pr

(
Λ1:T

)
=

T0−1∏
t=2

Pr

(
Λt

�� Λt−1;σ1,δ1) T∏
t=T0+1

Pr

(
Λt

�� Λt−1;σ2,δ2)
With the above modification, the objective shown in (6) becomes

f (ζ 1:T ,Λ1:T |B1:T
; χ1, χ2) = −

T∑
t=1
ℓ(π t ,Θt

;Bt ) + χ1

T∑
t=2
∥ζ t − ζ t−1∥2

+χ2

T0−1∑
t=2
∥Λt − Λt−1 − diag(δ1)∥

2

F + χ2

T∑
t=T0+1

∥Λt − Λt−1 − diag(δ2)∥
2

F

s.t. λlk ≥ 0 for all l ,k ; with π = SoftMax(ζ ) and Θ from eq. (3).

(11)

For purely level shift model, we set δ1 and δ2 to be the zero

vector. As for purely drift model, the second to the last summation

will end at t = T0 rather than t = T0 − 1. Note that, we can extend

our approach to more complex impact terms but for the purpose of

exposition the two models are sufficient.

3.2 Impact Assessment and Re-sampling
Once we have an estimate of the intervention parameters we need

to assess their significance and that requires uncertainty bands Bα
of the counterfactualmodelW with significance level α . This allows
us to determine whether the change of the network parameters

are significant. Based on the proposed generative DPL model, we

propose a resample procedure to estimate the uncertainty band

Bα by repeatedly generating J resamples of series of networks

corresponding to impact model I and the counterfactual model
W. A point estimate of the edge probability matrices of model I

can be obtained by the average of the resampled data, while the

uncertainty band of modelW can be constructed from the α/2-th
to 1−α/2-th quantile of the empirical distribution of the resampled

data. Details of resampling procedure can be found in Section A.

4 EXPERIMENTS
In this section we provide empirical support for our work and

experiment with different datasets including (1) synthetic dataset

with 8000 nodes Synth8000, (2) MIT reality mining dataset [16]

MITReal and (3) MathOverflow dataset [34] MathO. For analysis
of causal impact, we explore a modified version of MITReal and

Enron email dataset [27] EnronMail.
For evaluation we consider local and global clustering metrics.

Local metrics evaluate the community structure at each time sepa-

rately and global ones evaluate the clustering for all the time steps.

When the ground truth labels are available we use normalized mu-

tual information (NMI) score and for the more realistic case we

use modularity score [32] to compare competing community struc-

tures. These scores essentially measure the difference between the

fraction of edges connected between nodes of same groups and

the expected fraction if edges are distributed randomly. Moreover,

since the modularity score is consistent under the DC-SBM model

[49], it serves as a good criteria for evaluating competing models

for networks with no ground truth labels.

Two different global metrics are used in evaluating the estimated

labels when the ground truth labels are available. First one is called

global normalized mutual information (global NMI), which evalu-

ates the NMI scores of N nodes across all time steps together. Note

that local NMI scores are invariant under local permutations, while

global NMI scores only under global permutations. We also use pre-

cision/recall/F1 scores for classifying nodes that switch classes over

time. Since our model is a dynamic extension of SPL we refer the

reader to the section 4 of Amini et al. [3] for runtime comparisons.

Their experiments reveal that the runtime for the static method

is comparable to spectral clustering and over 10 time faster than

belief propagation. We compare our method (DPL) to the following

approaches (a) Proposed Algorithm 2 without relabeling (sDPL) (b)

Static pseudo likelihood (SPL) approach proposed in Amini et al.
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[3] (each time step estimated independently) (c) Spectral cluster-

ing with perturbation (SPC) of Amini et al. [3] and (d) Dynamic

stochastic block model (DSBM) of Xu and Hero [47].

4.1 Synthetic dataset – Synth8000
The synthetic dataset Synth8000 used in the experiment consists

of N = 8, 000 nodes, with communities size K = 30 and total time

steps T = 60, with average degree of the networks to be around

20 for each time step. The details of generating the dataset can be

found in Section B.1. The top row of Figure 2 shows the local met-

rics of the synthetic dataset. Purple line in Figure 2a and 2b show

the result of the proposed DPL method. On average, the proposed

algorithm has a 3% gain in NMI scores across all time compared

to the result of SPL. Figure 2b shows the modularity scores of the

communities estimated by different models over time. The figure

indicates that the estimated labels of DPL model are almost as good

as ground truth labels (blue line) in terms of modularity score. Fig-

ure 2c shows the 2D histogram of each class versus time. The y-axis

of each subfigure represents different communities, while x-axis

represents the time. The color in each cell represents the frequency

of occurrence, with lighter color represents higher frequency. The

ground truth 2D histogram in the bottom-right subfigure of 2c, one

can show a smooth transition of the estimated class labels across

time. DPL and sDPL both show some kind of smooth transition,

however, this is not the case for SPL as shown in the bottom-left

panel of the figure.

Global metrics of different algorithms are shown in Table 1.

The proposed algorithm, DPL, has the best global performance.

sDPL, which is the dynamic version of psuedo-likelihood without

relabeling, shows a gain in all global metrics. These results indicate

the importance of relabeling for improved performance in dynamic

stochastic block models.

For both change class detection and global NMI scores, DPL has

the best performance compared to other methods. Although only

have a 3% gain in performance in local metric, we have a nearly

20% gain in the global NMI scores with the time dependent model.

As expected, SPL and SPC does not perform well in terms of global

metrics, for all time steps are modeled independently. sDPL takes

into account the time dependency of smooth transition of model,

which results in a drastic gain in the global metrics. However, since

relabeling step is not used, we see a loss of performance in the class

switching prediction problem.

Table 1: Global metrics for Synth8000 dataset.

precision recall F1 NMI

DPL 0.134 0.983 0.236 0.744
sDPL 0.107 0.986 0.194 0.552

SPL 0.040 0.969 0.077 0.013

SPC 0.040 0.967 0.077 0.009

We were unable to run DSBM for this model as the implementa-

tion provided to us does not scale for community size K = 30 (see

Section 1.1). Additionally, since dropping the relabeling step from

DPL results in a drop in results, we exclude any further comparison

with it.

4.2 MIT reality mining dataset – MITReal
In the MIT reality mining dataset [16] we have T = 37 snapshots

of cell phone activity between N = 94 students and staffs at MIT.

Each snapshot corresponds to one week of data. The preprocessing

method used in this work is similar to that developed in Xu andHero

[47], which construct the temporal networks by physical proximity.

The affiliation of participants were known, which corresponds to

students and faculties and staffs (so K = 2), was used as the ground

truth label in the experiment. The proximity data we used were

between August 2004 till May 2005. Note that in this dataset, ground

truth labels do not change with time. However, the propensities of

edge formation change drastically with time because of different

events in the academic calendars (e.g., exam week, winter break,

etc.), making it suitable for a dynamic SBM.

The second row of Figure 2 shows the local metrics for different

inference algorithms. The drop in the range of t ∈ [16, 18] and
t ∈ [31, 32] correspond to the winter and spring break when the

networks get sparse. In the local metrics, DSBM performs slightly

better than the proposed algorithm DPL, since the local search

mechanism in the DSBM model searches for labels for each node

directly as opposed to aligning the posteriors (like our approach).

However, Figure 2f reveals that it does not do as well as DPL in

aligning clusters. The communities are consistent and the transi-

tions are smooth across all time in DPL, while the estimated labels

of other models suffer from class switching. This also affect the

results of global metrics as in Table 2, with DPL has the best global

NMI scores among all the considered algorithms.

Table 2: Global NMI score for MITReal

DPL SPL SPC DSBM

Global NMI 0.399 0.327 0.032 0.377

4.3 MathOverflow dataset – MathO
MathOverflow dataset [34], MathO, is a temporal network dataset of

the question and answer forumMathOverflow. The data collects the
activities of N = 24, 818 users across 2, 350 days. An edge at time t
et = (i, j) is formed if user i had answered or commented on user

j’s question or answer at time t . The temporal edges in the dataset

is 506, 550. In our experiment, each snapshots of graphs correspond

to one month of data, with total number of snap shots T = 79.

We further turned the original directed graph into an undirected

version to fit the proposed DPL model. The number of classes used

in the experiment is K = 15, which approximately corresponds

to the active research topics in mathematics. We compared our

approach to two other community detection methods, SPC and

SPL as we were unable to scale up to 24k nodes for the remaining

methods. Figure 3 shows themodularity score at different time steps.

DPL model has a 4% increase over SPL model in the modularity

scores on average across all time. The gain in the performance is

more significant at later time steps.
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(a) Synth8000 – Local NMI scores v.s time (b) Synth8000 – Local mod scores v.s. time (c) Synth8000 – 2D histogram of labels

(d) MITReal – Local NMI scores v.s time (e) MITReal – Local mod scores v.s. time (f) MITReal – 2D histogram of labels

Figure 2: Local metrics on Synth8000 and MITReal. Left column contains figures with local NMI scores. Middle column is the
modularity scores at each time steps. Right column is the 2D histogram of different models, with lighter colors represent cells
with more counts. The first row is the experiment results for Synth8000, while the second row is the results of MITReal.

Figure 3: Modularity scores versus time for MathO.

4.4 Causal impact on network
4.4.1 Synthetic dataset with level shift and drifts. For a simple

demonstrationwe first create two synthetic datasets (Synth8000Jump,
Synth8000Drift) with fixed K = 2 communities and T = 30. We

inject changes at T0 = 20 which leads to the larger community

getting less and the smaller getting more dense. This change is

introduced using a level shift and also a drift change in the edge

formation probabilities of the two communities. See Section B.2

and B.3 for data generation details.

Figure 4 shows the result of the causal impact on network. The

point estimate of the impact model I (solid line) and counterfactual
modelW (dash line) and the uncertainty bands are generated using

the resampling procedure described in Algorithm 4 of Section A.

Figure 4a shows the results for the Synth8000Jump dataset. The

confidence bands reveal that we are able to recover the impact to

the within-class edge probabilities, however the change to proba-

bility P̂01 is not significant. We see the same behavior for the drift

interventions in Figure 4c. A well separation of same entries of drift

terms δ1, δ2 before and after the impact shown in Figure 4b further

confirm the significance of the impact has on the network.

4.4.2 Fall semester MIT reality mining dataset. To test out approach
on a real dataset we made modifications to the original MITReal de-
scribed in Section 4.2 and refer to the new dataset as MITRealFall.
In which, the first two time steps are discarded, since the fall se-

mester started at the third week in MITReal. The Last week of

instruction of fall quarter happened at t = 14, which is the time

of intervention T0 = 14 for our analysis. Final exams and winter

breaks happened at t ∈ [15, 20]. Spring semester started at t = 21

therefore the networks after t = 21 are also discarded. The networks

of interaction follow a steady pattern during the course instruction
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(a) Synth8000Jump – Estimated pmatrix (b) Synth8000Drift – box plot of drifts δ1, δ2 (c) Synth8000Drift – Estimated pmatrix

(d) MITRealFall – estimated P matrix. (e) EnronMail – estimated P matrix.

Figure 4: Results of causal impact on networks. Solid and dash lines represent the point estimate of impactmodel PI and coun-
terfactual model PW , respectively. The shaded region is the 5% uncertainty band B5%. Figures 4a and 4c show the resampling
results for Synth8000Jump and Synth8000Drift, respectively. Figure 4b is the box plot of drift vectors δ1 and δ2 for impact model
I on Synth8000Drift dataset. Figures 4d and 4e show the the resampling results for MITRealFall and EnronMail, respectively.

period – which can be modeled with the DPL model (2). The inter-

vention here then corresponds to the end of the term, the period

after the last week of instruction. Note that the model can be easily

modified to deal with multiple interventions.

Figure 4d shows the estimated P̂00 and P̂11 across the time span.

Class 0 corresponds to the group of students while 1 corresponds to
the group of staffs and faculties. Resampled estimator in the figure

shows the drop in the edge propensity of students is significant,

while for staff it is not. This is intuitive since the winter break is ex-

pected to have a more significant impact on the physical proximity

between students compared to staffs and faculties.

4.4.3 Enron email dataset. The Enron dataset contains 4 years of

email messages between 184 Enron employees from 1998 to 2002.

There is an edge at time t if employee i and j communicated on

email. Each snapshot consists of a week of data, which results in

189 time steps in the original graph. The dataset EnronMail used in
the experiment contains the time steps from the 76th to the 176th

weeks. Seven different roles of employees are known and served as

the ground truth labels in the dataset. The roles of employees cor-

respond to directors, CEOs, presidents, vice-presidents, managers,

traders and others. The intervention (red line) corresponds to the

event when CEO Skillings resigned in response to the publicized

scandal. Figure 4e shows the estimated P̂22, which corresponds

to the probability of forming edges between presidents. We can

see that the estimated P̂22 is outside the 5% uncertainty band B5%

of the counterfactual, which indicates that such event caused an

“unnatural” change in the dynamics of email communication for a

block of network nodes.

5 CONCLUSION
To fill the gap in the literature on large scale modeling of dynamic

networks, we presented an efficient dynamic SBM framework (DPL).

Our approach extends the static pseudo-likelihood approach of [3]

to the time dependent case. The proposed regularization estimation

framework is efficiently estimated using projected SGD and can

scale up to tens of millions of nodes. Additionally, a novel exten-

sion of our approach to intervention analysis allows us to analyze

artifacts of exogenous impact on networks. These artifacts corre-

spond to structural changes in the intrepretable parameters of the

DPL framework and are estimated with corresponding uncertainty

quantile bands. For the practitioner this provides a useful tool to

understand external influence on network sequences.

The theoretical time complexity per iteration for a time step is

O(|Et | + NK2). The |Et | term comes from the block sum compu-

tation At1(e), which in the worst case is O(N 2). In future work
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we plan to update the pre-computed block sum from a previous

iteration using the proposed relabeling algorithm. We conjecture

that this can reduce the time complexity to O(K3 + NK2) per time

step. We also hope to experiment with much larger networks in

future work.
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A DETAILS FOR RE-SAMPLING
The resampling procedure for obtaining the confidence band Bα is

summarized as follows: a model before the intervention T0 was fit
on a series of networks with adjacency matrices A1:T0

. χ1 and χ2 are
chosen based on the metrics introduced in the experiment section.

For real networks without ground truth label, modularity scores are

used as the criteria. With the above regularization parameter, one

can estimate the community ĉ1:T and the underlying parameters

ˆΛ
1:T

of a the whole series of graph with adjacency matrices A1:T

with the modified DPL model as in (11).

To sample from the impact model I, we first generate the j-th

sample of edge propensity matrices Λ1:T
I, j by the random walk prior

with variance parameter σ 2 = 1

2χ 2

2

. Here we fix the starting point

t = 1 and change point t = T0, whichmeansΛt
I, j =

ˆΛ
t ∀ t ∈ {1,T0}.

Edge forming probability matrices can be computed and used in DC-

SBM model to generate a series of graph A1:T
I, j . The modified DPL

model as in (11) is then fit on the series of graph to estimate the j-th
sample of probability matrix P1:T

I, j . After a total of J resamples, we

obtain a collection of estimated probability matrices P1:T
I,1:J . Similar

procedure is used in obtaining the estimates for counterfactual
modelW, with only setting Λ1

W, j =
ˆΛ
1

rather than the change

point. The series of graphs are then fitted with the normal DPL

model as in Algorithm 2. An impact can be tested to be whether it

is significant under the significant level α by testing whether P̂t
I
∈

[Φt
W
(α/2),Φt

W
(1 − α/2)] for t ≥ T0, where Φ

t
W

is the cumulative

distribution function of Pt
W

. In practice, we use the percentile

from the resampled P̂t
W,1:J to form such uncertainty band and the

average of P̂t
I,1:J to get the estimate of P̂t

I
. Algorithm 4 in Section

A summarized the aforementioned resampling procedure.

B DATA GENERATION
B.1 Synthetic dataset – Synth8000
The Synth8000 dataset is generated as follows: N = 8000 nodes are

randomly assigned to 30 communities with probability proportion

to the size of the community at t = 0. The size of community k
is nk = Nqk , with qk drawn from a uniform distribution between

[0, 1] and normalized such that

∑
k qk = 1. 10% of the node were

selected to be the hub, with ϑ
hub
= 5×ϑ

ordinary
. The degree param-

eter of node i,ϑi is fixed across over time. Between 1 ≤ t ≤ 30, 4%

of the nodes will randomly switch their communities to other. At

31 ≤ t ≤ 60, the process is reversed, with the communities been

put back and return to original communities at t = 60.

With communities at time t , a random graph Gt (V ,Et ) is gen-
erated by the DC-SBM model. An edge et = (i, j) of the graph Gt

is formed according to the Bernoulli trial, with success probability

p = ϑiϑjPc ti ,c
t
j
. The probability matrix P = (pin − pout)I + pout11⊤,

with in-class probability pin = 1.8 × 10−3 and out-class probability

pout = 1.6 × 10−4.

B.2 Level shift dataset – Synth8000Jump
The community labels are constructed as follow: N = 8000 nodes

are randomly assigned to one of the two communities, with the

Algorithm 4: Re-sampling procedure

1 resampling (A1:T , e1:T ,M)

Return :Collection of resamples P̂1:T
M,1:J

▷ M is the model used, can be impact model I

or counterfactual model W

2 Choose χ1, χ2 by Algorithm 2 with A1:T0 , e1:T0 .
▷ Select parameters before intervention T0.

3 Estimate ĉ1:T , π̂1:T
and

ˆΛ
1:T

with modified model as in (11).

4 Set the resampled parameters c1:TR = ĉ1:T and Λ1

R =
ˆΛ
1

5 ifM = I then

6 Set ΛT0R =
ˆΛ
T0

7 end
8 Set σ 2

2
= 1

2χ 2

2

9 for j = 1 : J do
10 ifM = I then
11 Resample Λ2:T0−1

I, j and ΛT0+1:T
I, j from (9) and (10).

12 else
13 Resample Λ2:T

W, j from (5).

14 end
15 Obtain the MLE for P1:T

M, j and ϑ
1:T
M, j as in Section 2.2.

16 Generate adjacency matrix A1:T
M, j with DC-SBM model.

17 Estimate P̂1:T
M, j and

ˆΛ
1:T
M, j by running Algorithm 2 with

selected χ1, χ2 and outer iterationM = 1

18 end
19 P̂1:T

M,1:J is the collection of P̂1:T
M, j for j ∈ [J ]

size of the larger community to have 70% of the nodes. 10% of the

nodes are selected to be hubs with ϑ
hub
= 5 × ϑ

ordinary
. The degree

parameter ϑ are fixed across all time. The first class correspond to

the larger community.

The edge probability matrices P1:T are generated as follow: first

we set P1 = (p1
in
− p1

out
)I + p1

out
11⊤ with p1

in
= 0.004 and p1

out
=

0.0015. The edge propensity matrix Λ1
is then calculated by (3). For

1 < t < T0 andT0 < t ≤ T ,Λt is generated by (5).ΛT0 is drawn from
the same distribution but with mean parameter at ΛT0−1 + diag(η),
with η = [−3, 3]⊤. From (3), we can calculate P1:T from Λ1:T

. A

series of graph with adjacency matrices A1:T
can be generated by

DC-SBM model with the calculated probability matrices P1:T .

B.3 Drift dataset – Synth8000Drift
The community labels are generated as the same way as men-

tioned in Section B.2 but with second class corresponds to the

larger community. The probability matrix P1 and edge propensity

matrix Λ1
at time t = 1 is generated using the same method as

Synth8000Jump dataset. For 1 < t ≤ T , Λt is generated by the ran-
dom walk prior with drift as in (10), with drift before intervention

δ1 = [0.1, 0.1]⊤ and after intervention δ2 = [0.5,−0.5]. Probability
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Table 3: Notational table

Matrix operation

M Matrix

mi Column vector represents the i-th row of M
mT
:, j Column vector represents the j-th column of M

mi j Scalar represents ij-th element of M
[M]i j Scalar, alternative notation formi j

v Column vector

vi Scalar represents i-th element of vector v
[v]i Scalar, alternative notation for vi
Mt

Matrix M at time t
Mt1:t2

Collections of matrices M from t = t1 to t = t2
Mt1:t2
R, j The j-th resample of collection Mt1:t2

Mt1:t2
R,1:J All the J resamples of collection Mt1:t2

M1 ⊘M2 Hadamard (element-wise) division of M1 and M2

Scalars

N Vertices size

K Number of blocks

T Total time steps

χ1 Regularizer corresponds to the evolution of π
χ2 Regularizer corresponds to the evolution of Λ
M Number of outer iterations

T0 Time when the intervention happened

J Number of resamples

Matrices

A Adjacency matrix

c Truth community labels

e Initial guess of community labels

P Block probability matrix of DC-SBM

ϑ Degree heterogeneity parameters for DC-SBM

B(e) Block sum matrix for a given label e
n(e) Count array for a given label e
S(e) Count matrix for a given label e
π Prior distribution of community labels

Λ Edge propensity matrix

Θ (Row) Normalized edge propensity matrix

ζ Unconstraint parameter governs the transition of π
Ψ Class posterior matrix

Miscellaneous

Gt (V t ,Et ) Graph with vertex set V t
and edge set Et at time t

KL (P ∥Q) KL divergence of distribution P and Q
ν t Local permutation of time t
νд Global permutation

ΦX (α) Cumulative distribution function of X at level α
[U ] A set {1 · · · ,U } withU be a positive integer

W Counterfactual model

I Impact model

matrices P1:T are then calculated and are used to generated a series

a graph using DC-SBM model.

C NOTATIONAL TABLE
The notational table can be found in Table 3.
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