Yu-Chia Chen ¹ Marina Meilă ¹

Introduction

Problem Manifold learning (ML) algorithms **fail** apparently or suffer from artifacts when data manifold is long and thin, i.e., when it has **aspect ratio** > 2. The problem lies with the selection of (Diffusion Map) eigenvectors, and it is called Independent Eigen-coordinates Search (IES) problem.

What we do

- Formulate the problem mathematically, show that a solution exists (for Diffusion Map).
- Introduce a data driven loss $\mathfrak L$ and Independent eigen-coordinates search (IES) algorithm.
- Results on real and synthetic data, showing the problem is pervasive.
- Limit of \mathfrak{L} for $n \to \infty$.

Motivating example: eigenvalues/functions of $\Delta_{\mathcal{M}}$ on 2D long strip

Measurement of the strip (width, height) = (W, H). Here $\phi_{1,0}, \phi_{0,1}$ should be chosen.

$$\lambda_{k_1,k_2} = \left(\frac{k_1\pi}{W}\right)^2 + \left(\frac{k_2\pi}{H}\right)^2$$

$$\phi_{k_1,k_2}(w,h) = \cos\left(\frac{k_1\pi w}{W}\right)\cos\left(\frac{k_2\pi h}{H}\right)$$

Sorted in ascending order by λ , the first two eigenvalues are $\lambda_{1,0}$ and $\lambda_{2,0}$ if W/H>2, while $\lambda_{0.1}$ is the $[W/H]^{th}$ eigenvalue (see Figure 1).

Figure 1. Example of repeated eigen-directions problem.

IES problem [4]

- Defect on a family of *local*, *spectral* embedding algorithms: LE, DM, LLE, LTSA, HLLE.
- Coordinates of the embedding might not be functionally independent to each other.

Situations when a mapping $\phi(\mathcal{M})$ can fail to be invertible

- (Global) functional dependency: rank $\mathbf{D}\phi < d$ on an open subset or all of \mathcal{M} (yellow curve in 1a).
- The knot: rank $\mathbf{D}\phi < d$ at an isolated point (Figure 1b).
- The crossing: $\phi: \mathcal{M} \to \phi(\mathcal{M})$ is not invertible at \mathbf{x} , but \mathcal{M} can be covered with open sets U such that the restriction $\phi: U \to \phi(U)$ has full rank d (Figure 2).

Combinations of these three exemplary cases can occur.

Figure 2. The crossing.

Existence of solution [1] However, s, the number of eigenfunctions needed, may exceed the Whitney embedding dimension ($\leq 2d$), and that s may depend on injectivity radius, aspect ratio, etc.

Backgrounds

Laplacian eigenmap/diffusion map algorithm [2]

- . Build neighborhood graph G(V,E) with $V=[n], E=\{(i,j)\in V^2: \|\mathbf{x}_i-\mathbf{x}_j\|\leq 3\varepsilon\}$.
- 2. Compute kernel matrix $[\mathbf{K}]_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/\varepsilon^2)$ and the renormalized graph Laplacian

$$\mathbf{L} = \mathbf{I} - \mathbf{W}^{-1}\mathbf{D}^{-1}\mathbf{K}\mathbf{D}^{-1}$$
, where $\mathbf{D} = \operatorname{diag}(\mathbf{K}\mathbf{1}_n)$ and $\mathbf{W} = \operatorname{diag}\left(\mathbf{D}^{-1}\mathbf{K}\mathbf{D}^{-1}\mathbf{1}_n\right)$

3. An m dimensional embedding is obtained from the 2^{nd} to $m+1^{\text{th}}$ principal eigenvectors of L. • We will show that the coordinates chosen by the criteria will **not** give us an optimal embedding.

The pushforward Riemannian metric [6] Associate with $\phi(\mathcal{M})$ a pushforward Riemannian metric $g_{*\phi}$ that preserves the geometry of (\mathcal{M}, g) . Here $g_{*\phi}$ is defined by

$$\begin{split} \langle \mathbf{u}, \mathbf{v} \rangle_{g_{*\phi}(\mathbf{x})} &= \left\langle \mathbf{D} \phi^{-1}(\mathbf{x}) \mathbf{u}, \mathbf{D} \phi^{-1}(\mathbf{x}) \mathbf{v} \right\rangle_{g(\mathbf{x})} \\ &\text{for all } \mathbf{u}, \mathbf{v} \in \mathcal{T}_{\phi(\mathbf{x})} \phi(\mathcal{M}) \end{split}$$

- $\mathcal{T}_{\mathbf{x}}\mathcal{M}, \mathcal{T}_{\phi(\mathbf{x})}\phi(\mathcal{M})$ are tangent subspaces.
- $\mathsf{D}\phi^{-1}(\mathbf{x})$ maps vectors from $\mathcal{T}_{\phi(\mathbf{x})}\phi(\mathcal{M})$ to $\mathcal{T}_{\mathbf{x}}\mathcal{M}$.
- $g_{*\phi}(\mathbf{x}_i)$ in local coordinate is a PSD matrix $\mathbf{G}(i)$

$$\langle \mathbf{u}, \mathbf{v} \rangle_{q_{\mathbf{v}, b}(\mathbf{x}_i)} = \mathbf{u}^{\top} \mathbf{G}(i) \mathbf{v}$$

• Coordinate U(i) and distortion $\Sigma(i)$ are from the SVD of co-metric $\mathbf{H}(i) = \mathsf{pseudo_inv}(\mathbf{G}(i))$.

Algorithm 1: Riemannian metric estimation $\overline{\mathtt{RMetric}(\mathbf{Y},\mathbf{L},d)}$

for all $\mathbf{y}_i \in \mathbf{Y}, k = 1 \to m, l = 1 \to m$ do $[\mathbf{H}(i)]_{kl} = \sum_{j \neq i} L_{ij} (y_{jl} - y_{il}) (y_{jk} - y_{ik})$

for $i = 1 \rightarrow n do$

 $\mathbf{U}(i), \mathbf{\Sigma}(i) \leftarrow \mathtt{REDUCEDRANKSVD}(\tilde{\mathbf{H}}(i), d)$

 $\mathbf{H}(i) = \mathbf{U}(i) \mathbf{\Sigma}(i) \mathbf{U}(i)$ $\mathbf{G}(i) = \mathbf{U}(i) \mathbf{\Sigma}^{-1}(i) \mathbf{U}(i)^{\top}$

Return: $\mathbf{G}(i), \mathbf{H}(i) \in \mathbb{R}^{m \times m}, \mathbf{U}(i) \in \mathbb{R}^{m \times d},$ $\Sigma(i) \in \mathbb{R}^{d \times d}$, for $i \in [n]$

Related works

- . Analysis on the sufficient conditions for failure (Goldberg et al., 2008 [4]).
- 2. Functionally independent coordinates (Blau & Michaeli, 2017; Dsilva et al., 2018 [3]).
- 3. Sequential spectral decomposition (Gerber et al., 2007; Blau & Michaeli, 2017).

Loss function based on volume

¹University of Washington ☑ {yuchaz, mmp2}@uw.edu

Loss function Chosen independent coordinates $S_*(\zeta) = \operatorname{argmax}_{S \subset [m]: |S| = s: 1 \in S} \mathfrak{L}(S; \zeta)$

$$\mathfrak{L}(S;\zeta) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \log \sqrt{\det \left(\mathbf{U}_{S}(i)^{\top} \mathbf{U}_{S}(i)\right)}}_{\mathfrak{R}_{1}(S) = \frac{1}{n} \sum_{i=1}^{n} \mathfrak{R}_{1}(S;i)} - \underbrace{\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \log \|\mathbf{u}_{k}^{S}(i)\|_{2}}_{\mathfrak{R}_{2}(S) = \frac{1}{n} \sum_{i=1}^{n} \mathfrak{R}_{2}(S;i)} - \zeta \sum_{k \in S} \lambda_{k}$$

$$\mathfrak{R}_{2}(S) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathfrak{R}_{2}(S;i)}_{\mathfrak{R}_{2}(S;i)}$$

$$\mathfrak{R}_{2}(S) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathfrak{R}_{2}(S;i)}_{\mathfrak{R}_{2}(S;i)}$$

$$\mathfrak{R}_{3}(S) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathfrak{R}_{3}(S;i)}_{\mathfrak{R}_{3}(S;i)}$$

- 1. Start with larger set $[m] = \{1, \dots, m\}$ of eigenvector of **L**, find coordinates $S \subseteq [m]$ with |S| = sand force the slowest varying coordinate to **always** be chosen, i.e., $1 \in S$.
- 2. Projected volume of a unit parallelogram in $\mathcal{T}_{\phi_S(\mathbf{x}_i)}\phi_S(\mathcal{M})$, $\mathsf{Vol}(i;S) = \frac{\sqrt{\det(\mathbf{U}_S(i)^\top \mathbf{U}_S(i))}}{\prod_{k=1}^d \|\mathbf{u}_k^S(i)\|_2}$
- 3. ϕ_S is not an isometry
 - Remove the local distortions $\Sigma(i)$ introduced by ϕ from the estimated rank of ϕ at \mathbf{x} .
- 4. Regularization term, consisting of the sum of eigenvalues $\sum_{k \in S} \lambda_k$ of the graph Laplacian **L**, is added to penalize the high frequency coordinates.

Computation

- Time complexity is $\mathcal{O}(nm^{s+3}) \to \text{brute force}$ search for small s.
- $\mathfrak{R}_1, \mathfrak{R}_2$ in (1) are submodular set functions \rightarrow optimizing over difference of submodular functions for large s.
- [3] has quadratic dependency on sample size *n* (see also Figure 3).

Regularization path and choosing ζ Define the leave-one-out regret of point i

 $\mathfrak{D}(S,i) = \mathfrak{R}(S_*^i; [n] \setminus \{i\}) - \mathfrak{R}(S; [n] \setminus \{i\})$ with $S_*^i = \operatorname{argmax}_{S \subseteq [m]; |S| = s; 1 \in S} \Re(S; i)$

 \mathfrak{D} is the gain in \mathfrak{R} if all the other points $[n]\setminus\{i\}$ choose the un-regularized optimal coordinates in terms of point i.

 $\zeta' = \max_{\alpha} \text{Percentile}\left(\{\mathfrak{D}(S_*(\zeta), i)\}_{i=1}^n, \alpha\right) \leq 0$

Algorithm 2: Indep. Eigencoordinates Search INDEIGENSEARCH $(\mathbf{X}, \varepsilon, d, s, \zeta)$ $\mathbf{Y} \in \mathbb{R}^{n imes m}, \mathbf{L}, oldsymbol{\lambda} \in \mathbb{R}^m \leftarrow \mathtt{DiffMap}(\mathbf{X}, arepsilon)$ $\mathbf{U}(i), \cdots, \mathbf{U}(n) \leftarrow \mathtt{RMetric}(\mathbf{Y}, \mathbf{L}, d)$ for $S \in \{S' \subseteq [m] : |S'| = s, 1 \in S'\}$ do $\Re_1(S) \leftarrow 0; \Re_2(S) \leftarrow 0$ for $i = 1, \dots, n$ do $\mathbf{U}_S(i) \leftarrow \mathbf{U}(i)[S,:]$ $\mathfrak{R}_1(S) += \frac{1}{2n} \cdot \log \det \left(\mathbf{U}_S(i)^\top \mathbf{U}_S(i) \right)$ $\mathfrak{R}_2(S) += \frac{1}{n} \cdot \sum_{k=1}^d \log \|u_k^S(i)\|_2$ end $\mathfrak{L}(S;\zeta) = \mathfrak{R}_1(S) - \mathfrak{R}_2(S) - \zeta \sum_{k \in S} \lambda_k$

Return: Independent eigencoordinates set S_*

 $S_* = \operatorname{argmax}_S \mathfrak{L}(S; \zeta)$

Limit of loss \mathfrak{L}

Theorem (Limit of \mathfrak{R}) Let $j_S(\mathbf{y}) = 1/\operatorname{Vol}(\mathbf{U}_S(\mathbf{y})\boldsymbol{\Sigma}_S^{1/2}(\mathbf{y})); \tilde{\jmath}_S(\mathbf{y}) = \prod_{k=1}^d \left(\|u_k^S(\mathbf{y})\|\sigma_k(\mathbf{y})\right)^{1/2}\right)^{-1}$. Under the following **assumptions**: (i) The manifold \mathcal{M} is compact of class \mathcal{C}^3 , and there exists a set S, with |S| = s so that ϕ_S is a smooth embedding of \mathcal{M} in \mathbb{R}^s , (ii) The data are sampled from a distribution on \mathcal{M} continuous w.r.t. $\mu_{\mathcal{M}}$ with density p, and (iii) The estimate of \mathbf{H}_S in Algorithm 1 computed w.r.t. the embedding ϕ_S is consistent, we have $\lim_{n\to\infty}\frac{1}{n}\sum_i \ln \Re(S,\mathbf{x}_i) = \Re(S,\mathcal{M})$, with

$$\Re(S, \mathcal{M}) = -\int_{\phi_S(\mathcal{M})} \ln \frac{j_S(\mathbf{y})}{\tilde{\jmath}_S(\mathbf{y})} p(\phi_S^{-1}(\mathbf{y})) j_S(\mathbf{y}) d\mu_{\phi_S(\mathcal{M})}(\mathbf{y}) \stackrel{\text{def}}{=} -D(pj_S || p\tilde{\jmath}_S)$$

Because $j_S \geq \tilde{j}_S$ the divergence D is always positive.

The limit of regularization term $\phi_k^{\top} \mathbf{L} \phi_k \to \int_{\mathcal{M}} \|\operatorname{grad} \phi_k(\mathbf{x})\|_2^2 d\mu(\mathcal{M})$ when ϕ_k satisfies the Neumann boundary condition.

Experiments

Synthetic dataset — long strip and high torus

Experiments (cont.) & Discussion

Synthetic dataset — three torus

Real dataset

	n	D	$\deg_{\operatorname{avg}}$	(s,d)	t (sec)	S_*
SDSS (Abazajian et al. 2009)	299k	3750	144.91	(2, 2)	106.05	(1, 3)
Aspirin (Chmiela et al. 2017)	212k	244	101.03	(4, 3)	85.11	(1, 2, 3, 7)
Ethanol	555k	102	107.27	(3, 2)	233.16	(1, 2, 4)
Malondialdehyde	993k	96	106.51	(3, 2)	459.53	(1, 2, 3)
CH ₃ Cl (Fleming et al. 2016)	23k	34	91.84	(3, 2)	8.37	(1, 4, 6)

Figure 3. Runtime on 2D long strip, compared with [3].

Figure 4. Experimental result – real datasets & comparison. LLR is the method by [3].

Initializer for UMAP [5]

Discussion & Future works

- Defect of sequential search (see Figure 4g & 4h).
- Extension to LTSA & HLLE with gradient estimation by coefficient Laplacian (Ting & Jordan, 2018).
- Manifold optimization on the Grassmannian.

References

- [1] Jonathan Bates. The embedding dimension of laplacian eigenfunction maps. Applied and Computational Harmonic Analysis, 37(3):516-530, 2014.
- [2] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 30(1):5-30, 2006.
- [3] Carmeline J Dsilva, Ronen Talmon, Ronald R Coifman, and Ioannis G Kevrekidis. Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study. Applied and Computational Harmonic Analysis, 44(3):759-773, 2018.
- [4] Yair Goldberg, Alon Zakai, Dan Kushnir, and Ya'acov Ritov. Manifold learning: The price of normalization. Journal of Machine Learning Research, 9(Aug):1909-1939, 2008. Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv
- preprint arXiv:1802.03426, 2018 [6] D. Perraul-Joncas and M. Meila. Non-linear dimensionality reduction: Riemannian metric estimation and the problem of geometric
- discovery. ArXiv e-prints, May 2013.