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Introduction

Problem Manifold learning (ML) algorithms fail apparently or suffer from artifacts when data
manifold is long and thin, i.e., when it has aspect ratio > 2. The problem lies with the selection of
(DiffusionMap)eigenvectors, and it is called IndependentEigen-coordinatesSearch (IES)problem.

What we do

Formulate the problemmathematically, show that a solution exists (for DiffusionMap).

Introduce a data driven lossL and Independent eigen-coordinates search (IES) algorithm.

Results on real and synthetic data, showing the problem is pervasive.

Limit ofL for n→∞.

Motivating example: eigenvalues/functions of∆M on 2D long strip
Measurement of the strip (width, height) = (W, H). Here ϕ1,0, ϕ0,1 should be chosen.
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)
Sorted in ascending order by λ, the first two
eigenvalues are λ1,0 and λ2,0 ifW/H > 2, while
λ0,1 is the ⌈W/H⌉th eigenvalue (see Figure 1).
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Figure 1. Example of repeated eigen-directions problem.

IES problem [4]

Defect on a family of local, spectral embedding algorithms: LE, DM, LLE, LTSA, HLLE.

Coordinates of the embedding might not be functionally independent to each other.

Situations when amapping ϕ(M) can fail to be invertible
(Global) functional dependency: rankDϕ < d on an open subset or
all ofM (yellow curve in 1a).

The knot: rankDϕ < d at an isolated point (Figure 1b).

The crossing: ϕ :M→ ϕ(M) is not invertible at x, butM can be
covered with open setsU such that the restriction ϕ : U → ϕ(U)
has full rank d (Figure 2).

Combinations of these three exemplary cases can occur.
Figure 2. The crossing.

Existenceof solution [1] However, s, thenumberof eigenfunctionsneeded,mayexceed theWhit-
ney embedding dimension (≤ 2d), and that smay depend on injectivity radius, aspect ratio, etc.

Backgrounds

Laplacian eigenmap/diffusionmap algorithm [2]

1. Build neighborhood graphG(V, E)with V = [n], E = {(i, j) ∈ V 2 : ∥xi − xj∥ ≤ 3ε}.
2. Compute kernel matrix [K]ij = exp(−∥xi − xj∥2/ε2) and the renormalized graph Laplacian

L = I−W−1D−1KD−1, whereD = diag(K1n) andW = diag
(

D−1KD−11n

)
3. Anm dimensional embedding is obtained from the 2nd tom + 1th principal eigenvectors ofL.

Wewill show that the coordinates chosen by the criteria willnot give us an optimal embedding.

The pushforward Riemannian metric [6] Associate with ϕ(M) a pushforward Riemannian metric
g∗ϕ that preserves the geometry of (M, g). Here g∗ϕ is defined by

⟨u, v⟩g∗ϕ(x) =
⟨
Dϕ−1(x)u,Dϕ−1(x)v

⟩
g(x)

for all u, v ∈ Tϕ(x)ϕ(M)

TxM, Tϕ(x)ϕ(M) are tangent subspaces.
Dϕ−1(x)maps vectors from Tϕ(x)ϕ(M) to TxM.

g∗ϕ(xi) in local coordinate is a PSDmatrixG(i)

⟨u, v⟩g∗ϕ(xi) = u⊤G(i)v

CoordinateU(i) and distortionΣ(i) are from
the SVD of co-metricH(i) = pseudo_inv(G(i)).

Algorithm 1: Riemannian metric estimation
RMetric(Y, L, d)
for all yi ∈ Y, k = 1→ m, l = 1→ m do

[H̃(i)]kl =
∑

j ̸=i Lij(yjl − yil)(yjk − yik)
end
for i = 1→ n do

U(i),Σ(i)← ReducedRankSVD(H̃(i), d)
H(i) = U(i)Σ(i)U(i)⊤
G(i) = U(i)Σ−1(i)U(i)⊤

end
Return:G(i), H(i) ∈ Rm×m,U(i) ∈ Rm×d,

Σ(i) ∈ Rd×d, for i ∈ [n]

Related works

1. Analysis on the sufficient conditions for failure (Goldberg et al., 2008 [4]).

2. Functionally independent coordinates (Blau &Michaeli, 2017; Dsilva et al., 2018 [3]).

3. Sequential spectral decomposition (Gerber et al., 2007; Blau &Michaeli, 2017).

Loss function based on volume

Loss function Chosen independent coordinates S∗(ζ) = argmaxS⊆[m];|S|=s;1∈S L(S; ζ)

L(S; ζ) = 1
n

n∑
i=1

log
√

det
(
US(i)⊤US(i)

)
︸ ︷︷ ︸

R1(S)=1
n

∑n
i=1 R1(S;i)

− 1
n

n∑
i=1

d∑
k=1

log ∥uS
k (i)∥2︸ ︷︷ ︸

R2(S)=1
n

∑n
i=1 R2(S;i)

−ζ
∑
k∈S

λk (1)

1. Start with larger set [m] = {1, · · · , m} of eigenvector ofL, find coordinates S ⊆ [m]with |S| = s
and force the slowest varying coordinate to always be chosen, i.e., 1 ∈ S.

2. Projected volume of a unit parallelogram in TϕS(xi)ϕS(M), Vol(i; S) =

√
det(US(i)⊤US(i))∏d

k=1 ∥uS
k (i)∥2

3. ϕS is not an isometry
Remove the local distortionsΣ(i) introduced by ϕ from the estimated rank of ϕ at x.

4. Regularization term, consisting of the sum of eigenvalues
∑

k∈S λk of the graph LaplacianL, is
added to penalize the high frequency coordinates.

Computation
Time complexity isO(nms+3)→ brute force
search for small s.

R1,R2 in (1) are submodular set functions→
optimizing over difference of submodular
functions for large s.

[3] has quadratic dependency on sample size n
(see also Figure 3).

Regularization path and choosing ζ
Define the leave-one-out regret of point i

D(S, i) = R(Si
∗; [n]\{i})−R(S; [n]\{i})

with Si
∗ = argmaxS⊆[m];|S|=s;1∈SR(S; i)

D is the gain in R if all the other points [n]\{i}
choose the un-regularized optimal coordinates in
terms of point i.

ζ ′ = max
ζ≥0

Percentile ({D(S∗(ζ), i)}ni=1, α) ≤ 0

Algorithm 2: Indep. Eigencoordinates Search
IndEigenSearch(X, ε, d, s, ζ)
Y ∈ Rn×m, L, λ ∈ Rm←DiffMap(X, ε)
U(i), · · · , U(n)←RMetric(Y, L, d)
for S ∈ {S′ ⊆ [m] : |S′| = s, 1 ∈ S′} do

R1(S)← 0;R2(S)← 0
for i = 1, · · · , n do

US(i)← U(i)[S, :]
R1(S) += 1

2n · log det
(

US(i)⊤US(i)
)

R2(S) += 1
n ·

∑d
k=1 log ∥uS

k (i)∥2
end
L(S; ζ) = R1(S)−R2(S)− ζ

∑
k∈S λk

end
S∗ = argmaxS L(S; ζ)
Return: Independent eigencoordinates set S∗

Limit of loss L

Theorem (Limit ofR) Let jS(y) = 1/ Vol(US(y)Σ1/2
S (y)); ȷ̃S(y) =

∏d
k=1

(
∥uS

k (y)∥σk(y))1/2
)−1

.

Under the following assumptions: (i) The manifoldM is compact of class C3, and there exists a set
S, with |S| = s so that ϕS is a smooth embedding ofM in Rs, (ii) The data are sampled from a
distribution onM continuous w.r.t. µM with density p, and (iii) The estimate ofHS in Algorithm 1
computedw.r.t. the embeddingϕS is consistent, wehave limn→∞ 1

n

∑
i lnR(S, xi) = R(S,M), with

R(S,M) = −
∫

ϕS(M)
ln jS(y)

ȷ̃S(y)
p(ϕ−1

S (y))jS(y)dµϕS(M)(y) def= −D(pjS∥pȷ̃S)

Because jS ≥ ȷ̃S the divergenceD is always positive.

The limit of regularization term ϕ⊤k Lϕk →
∫
M ∥ grad ϕk(x)∥22dµ(M)when ϕk satisfies the Neu-

mann boundary condition.

Experiments

Synthetic dataset — long strip and high torus

Original dataX Embedding ϕ[s] Embedding ϕS∗ Regularization path
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Experiments (cont.) & Discussion

Synthetic dataset — three torus

Original dataX Embedding ϕ[s] Embedding ϕS∗ Regularization path
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Real dataset

n D degavg (s, d) t (sec) S∗

SDSS (Abazajian et al. 2009) 299k 3750 144.91 (2, 2) 106.05 (1, 3)
Aspirin (Chmiela et al. 2017) 212k 244 101.03 (4, 3) 85.11 (1, 2, 3, 7)
Ethanol 555k 102 107.27 (3, 2) 233.16 (1, 2, 4)
Malondialdehyde 993k 96 106.51 (3, 2) 459.53 (1, 2, 3)
CH3Cl (Fleming et al. 2016) 23k 34 91.84 (3, 2) 8.37 (1, 4, 6)
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Figure 3. Runtime on 2D long
strip, compared with [3].

(a) CH3Cl – ϕ[3] (b) CH3Cl –L({1, i, j}) (c) CH3Cl – ϕS1 = ϕ{1,4,6} (d) CH3Cl – ϕS2 = ϕ{1,5,7}

(e) SDSS – ϕ[2] (f) SDSS – ϕ{1,3} (g) ϕ{1,2,5} chosen by LLR (h) rk vs. ϕk of LLR

Figure 4. Experimental result – real datasets & comparison. LLR is the method by [3].

Initializer for UMAP [5]

(a) kneigh: # of neighbors in kNN graph. (b) min_dist: minimum separation inY.

Discussion & Future works

Defect of sequential search (see Figure 4g & 4h).

Extension to LTSA&HLLEwith gradient estimation by coefficient Laplacian (Ting & Jordan, 2018).

Manifold optimization on the Grassmannian.
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