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INFORMATION

Joint work withMarinaMeila.

Please check our paper [CM19] for more detail:
▶ Yu-Chia Chen andMarinaMeila. “Selecting the independent coordinates of manifolds with large

aspect ratios”. NeurIPS’19. (To appear, also on arXiv:1907.01651).

Paper, Slides & Poster can be downloaded here1.

Codes will be made available soon and can also be accessed here1 when it is ready.

1https://yuchaz.github.io/publication/2019-indep-coord-search
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INTRODUCTION

BASIC SETUP



MANIFOLD LEARNING

Given dataX ∈ Rn×D sampled from a smooth d-dimensional submanifoldM ⊂ RD.
Manifold Learning algorithmsmap xi, i ∈ [n] to yi = ϕ(xi) ∈ Rs, where d ⩽ s≪ D, thus
reducing the dimension of the dataXwhile preserving (some of) its properties.

ϕ−→
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INDEPENDENT EIGEN-COORDINATES SEARCH PROBLEM [GZKR08]

A family ofManifold learning algorithms fail apparently or suffer from artifactswhen data
manifoldM is long and thin, e.g., when it has aspect ratio> 2 for 2D strip.

ϕ(degenerate)−→

ϕ(independent)−→
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EXAMPLE WITH DIFFUSION MAP EMBEDDING — I

ϕ(degenerate)−→

ϕ(independent)−→
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EXAMPLE WITH DIFFUSION MAP EMBEDDING — II

ϕ(degenerate)−→

ϕ(independent)−→

Image source2.

2http://imgsrc.hubblesite.org/hu/db/images/hs-1999-25-a-full_tif.tif
5 33

http://imgsrc.hubblesite.org/hu/db/images/hs-1999-25-a-full_tif.tif


LOCAL, SPECTRAL EMBEDDING ALGORITHMS

The family of algorithms suffer from the artifacts

Laplacian eigenmap (LE) [BN03]

Diffusionmap (DM) [CL06]

Locally linear embedding (LLE) [RS00]

Local tangent space alignment (LTSA) [ZZ02]

Hessian LLE (HLLE) [DG03]

In this work, we focus on diffusion map algorithm. But wewill also discuss the possible
extensions & challenges to LTSA&HLLE algorithms.
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ALGORITHMIC FRAMEWORK

1. Build neighborhood graphG = (V,E).
▶ ε-ball kernel.

▶ k nearest neighbor (kNN) kernel.

▶ self-tuning kernel (e.g., continuous kNN [BS16]).

2. Construct matrixM from neighborhood graphG.

3. Solve themin-eigen problem ofM.
▶ m-dimensional embedding is obtained from the 2nd tom+ 1th minimum eigenvectors,
i.e.,ϕ = [ϕ1, · · · ,ϕm]

▶ In this work, we will show that the coordinates chosen by the above criteria will not give
us an optimal embedding.
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LAPLACIAN EIGENMAP/DIFFUSION MAP ALGORITHM

1. Build neighborhood graphG(V,E)with 3ε-ball kernel.
▶ V = [n],E = {(i, j) ∈ V2 : ∥xi − xj∥ ⩽ 3ε}.

2. Compute kernel matrix [K]ij = exp(−∥xi − xj∥2/ε2) and the renormalized graph
Laplacian L

L = I − W−1D−1KD−1

whereD = diag(K1n) andW = diag
(
D−1KD−11n

)
3. Anm dimensional embedding is obtained from the 2nd tom+ 1thmin-eigenvectors

of the graph Laplacian L.
▶ Coordinates chosen by the above criteria will suffer from the IES artifacts.
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MOTIVATING EXAMPLE



MOTIVATING EXAMPLE – 2D STRIP

The eigenvalues & eigen-functions of Laplace-Beltrami operator∆M (Neumann boundary
condition) on 2D long strip, measurement is (width, height) = (W,H), are

λk1,k2 =

(
k1π

W

)2
+

(
k2π

H

)2

ϕk1,k2(w,h) = cos
(
k1πw

W

)
cos

(
k2πh

H

)
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1

ϕ1,0,ϕ0,1 are independent thus should be chosen, while, e.g.,ϕ1,0,ϕ2,0 are not.
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MOTIVATING EXAMPLE – 2D STRIP

For example, letH = 1,W = 2π, we have

k1 = 0 k1 = 1 k1 = 2 k1 = 3 k1 = 4 k1 = 5 k1 = 6 k1 = 7
k2 = 0 0 1/2 1st 1 2nd 3/2 3rd 2 4th 5/2 5th 3 6th 7/2 8th
k2 = 1 π 7th · · · · · · · · · · · · · · · · · · · · ·

Sortϕk by λk, the first two eigenvalues are λ1,0 and λ2,0.

λ0,1 corresponds to the ⌈W/H⌉-th (= 7-th here) eigenvalue.
ϕ1,ϕ2 are orthogonal, but not functionally independent.

ϕ1,ϕ⌈W/H⌉ are functionally independent, therefore {1, ⌈W/H⌉}
should be chosen.
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SITUATION WHEN ϕ(M) CAN FAIL TO BE INVERTIBLE

(Global) functional dependency: rankDϕ < d on an open
subset or all ofM (yellow curve in top).

The knot: rankDϕ < d at an isolated point (middle).

The crossing: ϕ : M→ ϕ(M) is not invertible at x, butM can
be covered with open setsU such that the restriction
ϕ : U→ ϕ(U) has full rank d (bottom).

Existence of solution for LE/DMhas been proved [Bat14].
▶ However, s, the number of eigenfunctions needed, may
exceed theWhitney embedding dimension (⩽ 2d), and that s
may depend on injectivity radius, aspect ratio, etc.
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RIEMANNIAN METRIC



THE PUSHFORWARD RIEMANNIAN METRIC [PM13]

Associate withϕ(M) a pushforward Riemannian metric g∗ϕ that preserves the
geometry of (M,g). Here g∗ϕ is defined by

⟨u, v⟩g∗ϕ(x) =
⟨
Dϕ−1(x)u,Dϕ−1(x)v

⟩
g(x)

for all u, v ∈ Tϕ(x)ϕ(M)

▶ TxM, Tϕ(x)ϕ(M) are tangent subspaces.
▶ Dϕ−1(x)maps vectors from Tϕ(x)ϕ(M) to TxM.

g∗ϕ(xi) in local coordinate is a PSDmatrixG(i)

⟨u, v⟩g∗ϕ(xi) = u⊤G(i)v
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PUSHFORWARD METRIC ESTIMATION

Local CoordinateU(i) (tangent
plane) on embedding yi = ϕ(xi)
and distortionΣ(i) can be obtained
by SVD of co-metricH(i)
= pseudo_inv(G(i)).

Local coordinateU(i) projects onto
coordinates set S is

US(i) = U(i)[S, :]

Algorithm 1: Riemannianmetric estimation

RMetric(Y, L,d)
for all yi ∈ Y,k = 1→ m, l = 1→ m do

[H̃(i)]kl =
∑

j̸=i Lij(yjl − yil)(yjk − yik)

end
for i = 1→ n do

U(i),Σ(i)← ReducedRankSVD(H̃(i),d)
H(i) = U(i)Σ(i)U(i)⊤

G(i) = U(i)Σ−1(i)U(i)⊤

end
Return:U(i) ∈ Rm×d for i ∈ [n]
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LOSS FUNCTION BASED ON VOLUME



LOSS FUNCTION

The loss function

L(S; ζ) = 1
n

n∑
i=1

log
√

det (US(i)⊤US(i))︸ ︷︷ ︸
R1(S)=

1
n

∑n
i=1 R1(S;i)

−
1
n

n∑
i=1

d∑
k=1

log ∥uS
k(i)∥2︸ ︷︷ ︸

R2(S)=
1
n

∑n
i=1 R2(S;i)

−ζ
∑
k∈S

λk (1)

The chosen independent coordinates

S∗(ζ) = argmax
S⊆[m];|S|=s;1∈S

L(S; ζ)
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LOSS FUNCTION

The search space: S∗(ζ) = argmaxS⊆[m];|S|=s;1∈S L(S; ζ)
▶ S∗ exists but cannot be computed analytically [Bat14].
▶ Start with larger set [m] = {1, · · · ,m} of eigenvector of L, find coordinates S ⊆ [m]with

|S| = s and force the slowest varying coordinate to always be chosen , i.e., 1 ∈ S.

R = R1 −R2 = (· · · )
▶ Projected volume of a unit parallelogram in TϕS(xi)ϕS(M)

Vol(i;S) =
√

det (US(i)⊤US(i))∏d
k=1 ∥uS

k(i)∥2

US(i)

TφS(xi)φS(M)

▶ SinceϕS is not an isometry→ remove the local distortionsΣ(i) introduced byϕ from
the estimated rank ofϕ at x.

Regularization term, consisting of the sum of eigenvalues
∑

k∈S λk of the graph
Laplacian L, is added to penalize the high frequency coordinates.
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PSEUDO-CODE FOR BRUTE-FORCE SEARCH

Algorithm 2: Independent Eigencoordinates Search

IndEigenSearch(X, ε,d, s, ζ)
Y ∈ Rn×m, L, λ ∈ Rm ←DiffMap(X, ε)
U(i), · · · , U(n)←RMetric(Y, L,d)
for S ∈ {S ′ ⊆ [m] : |S ′| = s, 1 ∈ S ′} do

R1(S)← 0;R2(S)← 0
for i = 1, · · · ,n do

US(i)← U(i)[S, :]
R1(S) += 1

2n · log det
(
US(i)

⊤US(i)
)

R2(S) += 1
n
·
∑d

k=1 log ∥uS
k(i)∥2

end
L(S; ζ) = R1(S) − R2(S) − ζ

∑
k∈S λk

end
S∗ = argmaxS L(S; ζ)
Return: Independent eigencoordinates set S∗
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LIMIT OF LOSS L



ASSUMPTIONS

1. ThemanifoldM is compact of class C3, and there exists a set S, with |S| = s so thatϕS

is a smooth embedding ofM inRs.

2. The data are sampled from a distribution onM continuous w.r.t. µM with density p.

3. The estimate ofHS in Algorithm 1 computed w.r.t. the embeddingϕS is consistent.

Discussion

From [Bat14] that Assumption 1 is satisfied for the LE/DM embedding.

Assumptions 2, 3 are minimal requirements ensuring that limits of our quantities
exist.

Let jS(y) = 1/Vol(US(y)Σ1/2
S (y)) and ȷ̃S(y) =

∏d
k=1

(
∥uS

k(y)∥σk(y))1/2)−1
, we study

the limit ofL (Theorem 1 next page).
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LIMIT OF L — R = R1 −R2

THEOREM 1 (LIMIT OF R)

Under Assumptions 1–3,

lim
n→∞ 1

n

∑
i

lnR(S, xi) = R(S,M)

and

R(S,M) = −

∫
ϕS(M)

ln jS(y)
ȷ̃S(y)

p(ϕ−1
S (y))jS(y)dµϕS(M)(y) := −D(pjS∥pȷ̃S)

D(·∥·) is a KL divergence, where themeasures defined by pjS,pȷ̃S normalize to
different values.

Because jS ⩾ ȷ̃S the divergenceD is always positive
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LIMIT OF L — REGULARIZATION TERM

Spectral convergence of L [BN07, vLBB08]
The smoothness penalty converges to

ϕ⊤
k Lϕk →

∫
M

∥ gradϕk(x)∥22dµ(M) (2)

Sinceϕk satisfies the Neumann boundary condition (for LE/DM).

Discussion on the extension to LLE, LTSA andHLLE

1. Unlike LE/DM, no theory has been developed for Assumption 1.

2. LLE, LTSA andHLLE converge to different differential operators (with different
boundary conditions) [TJ18], one has to modify the regularization term in (2) to get a
better estimate of smoothness.
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EXPERIMENTS

SYNTHETIC DATASETS



2D LONG STRIP

The synthetic 2D long stripwith aspect ratioW/H = 2π.
From the analysis before, the corresponding slowest varying unique eigendirections
are S∗ = {1, ⌈W/H⌉} = {1, 7}.

(a) Original dataX (b) ϕ[2] (c) ϕS∗

10−2 100 102 104

ζ

{1, 2}

{1, 7}

−2

0

2

D
(S
,i

)

(d) Regularization path
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HIGH TORUS

The syntheticHigh torus dataset: example of the minimum embedding dimension s is
greater than the intrinsic dimension d.

S∗ = {1, 4, 5}

(e) Original dataX (f) ϕ[3] (g) ϕS∗

10−10 10−7 10−4 10−1 102

ζ

{1, 2, 3}

{1, 2, 4}

{1, 4, 5}

−1

0

1

D
(S
,i

)

(h) Regularization path
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THREE TORUS

The synthetic Three torus dataset: example of manifold having higher intrinsic
dimension d, which cannot be visualized easily.

S∗ = {1, 2, 5, 10}

(i) Original dataX{3,4} (j) ϕ{3,4} (k) ϕS∗
{3,4}

10−2 10−1 100 101 102

ζ

{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 5, 10}

{1, 5, 6, 10}

−2

0

2

4

D
(S
,i

)

(l) Regularization path
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EXTRA EXPERIMENTS

Experiments onmore synthetic datasets can be found on the paper [CM19].
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EXPERIMENTS

REAL DATASETS



OVERVIEW

n D degavg (s,d) t (sec) S∗

SDSS [AAA+09] 299k 3750 144.91 (2, 2) 106.05 (1, 3)
Aspirin [CTS+17] 212k 244 101.03 (4, 3) 85.11 (1, 2, 3, 7)
Ethanol 555k 102 107.27 (3, 2) 233.16 (1, 2, 4)
Malondialdehyde 993k 96 106.51 (3, 2) 459.53 (1, 2, 3)
CH3Cl [FTP16] 23k 34 91.84 (3, 2) 8.37 (1, 4, 6)

Selected eigenvectors ↑
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CHLOROMETHANE MOLECULAR DYNAMICS SIMULATION [FTP16]

MD simulation of the following reaction

CH3Cl + Cl− ↔ CH3Cl + Cl−

Clusters, and a sparse connection between two clusters are visible.

(m), (o) & (p) are colored by the distance betweenC and Cl, Cl, Cl, respectively.

(m) ϕ[3] (n) Heatmap ofL({1, i, j}) (o) ϕS∗ (p) ϕS2
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GALAXY SPECTRA FROM THE SDSS [AAA+09]

Data can be downloaded here3 and are preprocessed the sameway as [MMVZ16].

We sampledn = 50, 000 points from the first 0.3 million points
▶ correspond to closer galaxies.

Embeddings are colored by the blue spectrummagnitude
▶ correlated to the number of young stars in the galaxy.

(q) ϕ[2] (r) ϕS∗

3http://sdss.org
26 33
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EXPERIMENTS

APPLICATION



INITIALIZER FOR UMAP [MHM18]

The UMAP algorithmworks as follow,

Build a local fuzzy simplicial complex SCk = (V,E,Σ2, · · · ,Σk) from the dataX.
▶ In their construction, only 1-skeleton of the simplicial set is considered in the loss
function, so essentially it represents a graphG = (V,E) = SC1.

Initialize the embeddingY0 ← DiffusionMap(G)

Optimize the following loss function by gradient descent.

Y∗ = argmin
Y

C (p(X),q(Y); SC1)

▶ HereC(p,q; SC1) is the cross entropy defined on the simplicial set SC1
▶ p,q is the transition probability computed onX andY, respectively.
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INITIALIZER FOR UMAP [MHM18]

The bad initialization cannot always be fixed bymore iterations.
▶ In this simple example, it can. However, one needswaymore iterations for it to converge.

Figure below shows the experiment result of different initialization methods and
choices of hyper-parameters with fixed iterations.

kneigh: # of neighbors in kNN graph. min_dist: minimum separation inY.
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RELATED WORKS

Analysis on the sufficient conditions for failure [GZKR08].
▶ Focuses on rectangles/cubes.
▶ Failure defines as obtaining a mappingY = ϕ(X) that is not affinely equivalentw.r.t.
original dataX.

Functionally independent coordinates [DTCK18].
▶ Ifϕk is a repeated eigendirection ofϕ1, · · · ,ϕk−1, one can fitϕk with local linear

regression (LLR) on predictorsϕ[k−1] with low leave-one-out errors rk.
▶ Sequentially fit LLR onϕk and obtain the coordinates with first few largest rk’s.

Sequential spectral decomposition [GTW07, BM17].
▶ Modifying thematrixMk constructed for finding each k-th coordinate. ϕk can be
obtained by the first min-eigenvector ofMk.
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▶ Failure defines as obtaining a mappingY = ϕ(X) that is not affinely equivalentw.r.t.
original dataX.

Functionally independent coordinates [DTCK18].
▶ Ifϕk is a repeated eigendirection ofϕ1, · · · ,ϕk−1, one can fitϕk with local linear

regression (LLR) on predictorsϕ[k−1] with low leave-one-out errors rk.
▶ Sequentially fit LLR onϕk and obtain the coordinates with first few largest rk’s.

Sequential spectral decomposition [GTW07, BM17].
▶ Modifying thematrixMk constructed for finding each k-th coordinate. ϕk can be
obtained by the first min-eigenvector ofMk.
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TIME COMPLEXITY

Time complexity isO(nms+3)→ brute force search for small s.

R1,R2 in (1) are submodular set functions→ optimizing over difference of
submodular functions for large s.

[DTCK18] has quadratic dependency on sample sizen, see,
e.g., empirical runtime on the right.

[GTW07, BM17] in general has quadratic to cubic time
complexity. Convergence depends on the condition num-
ber of the system and eigen-solver used.
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COMPARISON WITH [DTCK18]

The embedding chosen by [DTCK18] is clearly shown to be suboptimal.

This is because the algorithm searches in a sequential fashion; the noise eigenvector
ϕ2 in this example appears before the signal eigenvectors e.g.,ϕ4 andϕ5.

(u) ϕS∗ by [DTCK18] (v) Leave one out error
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CONCLUSION



CONCLUSION

In this work, we

Formulate the problemmathematically, show that a solution exists (for DM).

Introduce a data driven lossL and Independent eigen-coordinates search (IES)
algorithm.

Have experiments on real and synthetic data, showing the problem is pervasive.

Analyze the limit ofL forn→∞.
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FUTURE WORKS

1. Extension of IES algorithm to LLE, LTSA &HLLE
▶ Develop theories for Assumption 1.
▶ Estimate gradient using coefficient Laplacian [TJ18].

2. Manifold optimization on the Grassmannian.
▶ Instead of searching over fixed coordinates S ⊂ [m], one can instead search over all
possible projections.

▶ Lwill be a difference of convex function.
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THANK YOU VERY MUCH!
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BACKUP SLIDES

SOME INTUITIONS FOR IES PROBLEM



SOME INTUITIONS — I

Two point cloudsX1
p
∼ M1,X2

p
∼ M2 sampled from twomanifold w.r.t. same density p.

The neighborhood graphG(V,E) should be built with similar ε.
Short edges behave like noises.

It is possible to remove the defect by constructing a anisotropic kernel, however

An isotropic kernel is needed for the convergence of graph Laplacian L [THJ11].
Difficult to obtain/design such kernel since we do not knowM.



SOME INTUITIONS — II

Another way to think of it is to consider the Rayleigh quotient of the min-eigenvalue
problem. The k-th minimum eigenvalue for graph Laplacian L is

ϕk = argmin
φ⊥ϕ1···ϕk−1;∥φ∥2=1

φ⊤Lφ = argmin
φ⊥ϕ1···ϕk−1;∥φ∥2=1

∑
(i,j)∈E

(φi −φj)
2

∥φ∥2 = 1, in some sense it “normalizes” the manifold to equal aspect ratio.
The density along the short edges are now sparser than the original density p.

The term (φi −φj)
2 penalizes the functionφ(·) parametrized short edges.
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HOW TO CHOOSE ζ



REGULARIZATION PATH AND CHOOSING ζ

Define the leave-one-out regret of point i

D(S, i) = R(Si∗; [n]\{i}) − R(S; [n]\{i})
with Si∗ = argmaxS⊆[m];|S|=s;1∈SR(S; i)

D(S, i) is the gain inR if all the other points [n]\{i} choose the un-regularized optimal
coordinates set in terms of point i.

The optimal ζ ′ is then chosen by

ζ ′ = max
ζ⩾0

Percentile ({D(S∗(ζ), i)}ni=1,α) ⩽ 0
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