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INFORMATION

m Joint work with Marina Meila.

m Please check our paper [CM19] for more detail:

» Yu-Chia Chen and Marina Meila. “Selecting the independent coordinates of manifolds with large
aspect ratios”. Neurl|PS'19. (To appear, also on arXiv:1907.01651).

m Paper, Slides & Poster can be downloaded here?.

m Codes will be made available soon and can also be accessed here® when it is ready.

Thttps://yuchaz.github.io/publication/2019-indep-coord-search w
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BASIC SETUP




MANIFOLD LEARNING

Givendata X € R™*P sampled from a smooth d-dimensional submanifold M c RP.
Manifold Learning algorithms map xi, 1 € [(n] toy; = ¢(xi) € R%, whered < s < D, thus
reducing the dimension of the data X while preserving (some of) its properties.




INDEPENDENT EIGEN-COORDINATES SEARCH PROBLEM [GZKR08]

A family of Manifold learning algorithms fail apparently or suffer from artifacts when data
manifold M is long and thin, e.g., when it has aspect ratio > 2 for 2D strip.
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LOCAL, SPECTRAL EMBEDDING ALGORITHMS

The family of algorithms suffer from the artifacts
m Laplacianeigenmap (LE) [BNO3]
m Diffusion map (DM) [CLOé]
m Locally linear embedding (LLE) [RSOO]
m Local tangent space alignment (LTSA) [ZZ02]
m Hessian LLE (HLLE) [DGO3]

In this work, we focus on diffusion map algorithm. But we will also discuss the possible
extensions & challenges to LTSA & HLLE algorithms.
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» ¢-ball kernel. w A

» knearest neighbor (kNN) kernel.

» self-tuning kernel (e.g., continuous kNN [BS16]). |
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ALGORITHMIC FRAMEWORK

1. Build neighborhood graph G = (V, E).

» ¢-ball kernel. w A

» knearest neighbor (kNN) kernel.

» self-tuning kernel (e.g., continuous kNN [BS16]). |

2. Construct matrix M from neighborhood graph G.
3. Solve the min-eigen problem of M.
» m-dimensional embedding is obtained from the 2" to m 4 1" minimum eigenvectors,

e, =[d1,--, dml

» Inthis work, we will show that the coordinates chosen by the above criteria will not give
us an optimal embedding.




LAPLACIAN EIGENMAP/DIFFUSION MAP ALGORITHM

1. Build neighborhood graph G(V, E) with 3¢-ball kernel.
» V=[n],E={({j) € V?: |xi —x|| < 3e}.

2. Compute kernel matrix [K]i; = exp(—||x; — x; |I2/€2) and the renormalized graph
Laplacian L
L=1-wW!D!KD!

where D = diag(K1,) and W = diag (D"'KD'1,,)
3. An mdimensional embedding is obtained from the 2" to m + 1" min-eigenvectors

of the graph Laplacian L.
» Coordinates chosen by the above criteria will suffer from the IES artifacts.
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MOTIVATING EXAMPLE - 2D STRIP

The eigenvalues & eigen-functions of Laplace-Beltrami operator Ay (Neumann boundary
condition) on 2D long strip, measurement is (width, height) = (W, H), are

o EYY

Ml = ( w H

kitw komth -1
P, k, (W, h) = cos < W > cos < o ) o

1.0, $o,1 are independent thus should be chosen, while, e.g., d1.9, $2,0 are not.
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MOTIVATING EXAMPLE - 2D STRIP

Forexample, let H = 1, W = 27, we have
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MOTIVATING EXAMPLE - 2D STRIP

Forexample, let H = 1, W = 27, we have

k1i=0| ki=1 | ki =2| ki=3 | k1=4| k1 =5 | ki=6]| ki =7
ko =0 0|1/21st| 12nd | 3/23rd | 2 4th | 5/25th | 3 6th | 7/2 8th
k2:1 T[?th [ [ [ . o 000 500 500

m Sort ¢y by Ay, the first two eigenvalues are A1 o and Az o.
B Ao 1 corresponds to the [W/H]-th (= 7-th here) eigenvalue.

b0 /[ Poa

m ¢1, ¢o are orthogonal, but not functionally independent.

® §1, drw, H are functionally independent, therefore {1, [W/H} o0
should be chosen.




SITUATION WHEN ¢ (M) CAN FAIL TO BE INVERTIBLE

m (Global) functional dependency: rank D¢ < d on an open
subset or all of M (yellow curve in top).

m The knot: rank Dd < d at anisolated point (middle).

m Thecrossing: ¢ : M — ¢ (M) is not invertible at x, but M can
be covered with open sets U such that the restriction
¢ : U — ¢(U) has full rank d (bottom).




SITUATION WHEN ¢ (M) CAN FAIL TO BE INVERTIBLE

m (Global) functional dependency: rank D¢ < d on an open
subset or all of M (yellow curve in top).

m The knot: rank Dd < d at anisolated point (middle).

m Thecrossing: ¢ : M — ¢ (M) is not invertible at x, but M can
be covered with open sets U such that the restriction
¢ : U — ¢(U) has full rank d (bottom).

m Existence of solution for LE/DM has been proved [Bat14].
» However, s, the number of eigenfunctions needed, may
exceed the Whitney embedding dimension (< 2d), and that s
may depend on injectivity radius, aspect ratio, etc.




RIEMANNIAN METRIC




THE PUSHFORWARD RIEMANNIAN METRIC [PM13]

m Associate with (M) a pushforward Riemannian metric g.¢ that preserves the
geometry of (M, g). Here g, is defined by

(U, V)g,,(x) = (DO (x)u, DG~ (x)v)
forallu,v € Ty ) d(M)

g(x)
> TM, T (x) P (M) are tangent subspaces.
» D1 (x) maps vectors from T (x) (M) to TyM.

B g.¢(xi) inlocal coordinate is a PSD matrix G(i)

(u, v>g*¢(xi) = uTG(i)v




PUSHFORWARD METRIC ESTIMATION

m Local Coordinate U(1) (tangent
plane) on embeddingy; = & (xi)
and distortion X (1) can be obtained
by SVD of co-metric H(1)
= pseudo_inv(G(1)).

m Local coordinate U(i) projects onto
coordinatesset Sis

Algorithm 1: Riemannian metric estimation
RMetric(Y, L, d)
forally; e Y, k=1—-m,1l=1— mdo

| HOha = X5 Lij(yin — yu) (Yjx — yix)
end
fori=1—ndo
U(i), (i) « ReducedRankSVD(H(i), d)
Hi)=U{DZ({H)U{) "
Gl =UH)Z 1)U’

end
Return: U(i) € R™*d fori € [n]




LOSS FUNCTION BASED ON VOLUME




LOSS FUNCTION

The loss function

1 n : : 1 n d ‘ »
£(5:0) = =3 log/det (Us()TUs() == 3 3 loguf(i)la—C }_ Ax (1
i=1 i=1k=1 keS
R1(S)=7 X1 Ru(Si) Ro(S)=7 X1y R (Sit)
The chosen independent coordinates
S«(¢) = argmax  £(S;0)

SC[mJ;|S|=s;1€S

w



LOSS FUNCTION

m The search space: §4(C) = argmaxgc (m];s|=s:1es £(S; 0)

» S, exists but cannot be computed analytically [Bat14].
» Start with larger set [m] = {1, --- , m}of eigenvector of L, find coordinates S C [m] with
IS| = s and force the slowest varying coordinate to always be chosen ,i.e., 1 € S.
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» S, exists but cannot be computed analytically [Bat14].
» Startwith larger set [m] ={1,--- , m}of eigenvector of L, find coordinates S C [m] with
|S| = s and force the slovvest varying coordinate to always be chosen,ie.,1 € S.

BER=R—-Ro=(-)

» Projected volume of a unit parallelogram in Ty x; ) Ps (M)

\/det (Us (i) TUs (1))
[T Iug @)l

» Since ¢ is not anisometry — remove the local distortions (1) introduced by ¢ from
the estimated rank of ¢ at x.

““U s(i
Tistr)¢s(M)

Vol(i; S) =

m Regularization term, consisting of the sum of eigenvalues }_; g Ak of the graph

Laplacian L, is added to penalize the high frequency coordinates.




PSEUDO-CODE FOR BRUTE-FORCE SEARCH

Algorithm 2: Independent Eigencoordinates Search
IndEigenSearch(X, ¢, d, s, ¢)
Y e R™™M L AeR™ «+DiffMap(X, ¢)
U(i), - ,U(n) «<RMetric(Y,L,d)
forSe{S'C[m]:|S'|=s,1€S'}do
9%1(5) — 0; 9{2(5) +~0
fori=1,--- ,ndo
Us(i) + U1)[S, ]
M1(S) += 5 - logdet (Us(i) TUs(i))

n
Ra(S) +=1 -3¢ logluf(i)]2
end
£(S;0) =R1(S) —R2(S) = T2 yes Mk

end
S, = argmaxg £(S; Q)
Return: Independent eigencoordinates set S,




LIMIT OF LOSS £




ASSUMPTIONS

1. The manifold M is compact of class €3, and there exists a set S, with |S| = s so that ¢
is asmooth embedding of M in RS,

2. The data are sampled from a distribution on M continuous w.r.t. uy with density p.

3. The estimate of Hg in Algorithm 1 computed w.r.t. the embedding ¢ is consistent.

Discussion

m From [Bat14]that Assumption 1is satisfied for the LE/DM embedding.

m Assumptions 2, 3 are minimal requirements ensuring that limits of our quantities
exist.

Letjs(y) = 1/ Vol(Us(y)Z&/2(y)) andjs(y) = TTE.; (Jlul(y)low(y))/2) ", we study

the limit of £ (Theorem 1 next page).
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LIMITOF £ — R =R — Ay

THEOREM 1 (LIMIT OF R)

Under Assumptions 1-3,

. 1
lim - Z InR(S, xi) = R(S, M)

and

_ js(y) -1 . . . "
PR(S, M) = L,S(M)'”is(y)"”’s (¥))is¥)ditos 20 (¥) = —D(pjs|ps)

m D(:|-) is a KL divergence, where the measures defined by pjs, pjs normalize to
different values.

m Becausejs > Js the divergence D is always positive



LIMIT OF £ — REGULARIZATION TERM

Spectral convergence of L [BNO7, vLBB08]
The smoothness penalty converges to

b Lok — JM || grad P (x)[|5dp (M) (2)

Since ¢y satisfies the Neumann boundary condition (for LE/DM).




LIMIT OF £ — REGULARIZATION TERM

Spectral convergence of L [BNO7, vLBB08]
The smoothness penalty converges to

STLw— | [lerad ou)Bau0) @
Since ¢y satisfies the Neumann boundary condition (for LE/DM).

Discussion on the extension to LLE, LTSA and HLLE
1. Unlike LE/DM, no theory has been developed for Assumption 1.

2. LLE, LTSA and HLLE converge to different differential operators (with different
boundary conditions) [TJ18], one has to modify the regularization termin (2) to get a
better estimate of smoothness.
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EXPERIMENTS

SYNTHETIC DATASETS




2D LONG STRIP

m The synthetic 2D long strip with aspect ratio W/H = 2m.
m From the analysis before, the corresponding slowest varying unique eigendirections
areS, ={1, [W/H|} ={1,7}.
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HIGH TORUS

m The synthetic High torus dataset: example of the minimum embedding dimension s is
greater than the intrinsic dimension d.

m S, =1{145}
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THREE TORUS

m The synthetic Three torus dataset: example of manifold having higher intrinsic
dimension d, which cannot be visualized easily.

m S, ={1,2,510}

0.01 {1 Iaa—— & 4
S 0 T i 5 000 Z . {1.2.5. 10}, — T =
_1 . : s Y & F ‘i‘ R

—0.01 T I L

) (l‘)i, 2 u‘,()n‘l 0.01 —0.01 liv:))lrl 0.01 T
D3 3 > ¢
(i) Original data X3 4 (G) drza (k) bsz, (L) Regularization path
s,

W




EXTRA EXPERIMENTS

Experiments on more synthetic datasets can be found on the paper [CM19].
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REAL DATASETS




OVERVIEW

t (sec) S*

(/:

n D deg,,

(s, d)
SDSS[AAATO?] 299k 3750 14491 (2,2) 106.05 (1,3)
Aspirin[CTST17] 212k 244 10103 (4,3) 8511 (1,2,3,7)
Ethanol 555k 102 107.27 (3,2) 233.16 (1,2,4)
Malondialdehyde 993k 96 10651 (3,2) 459.53 (1,2,3)
CH3CI[FTP16] 23k 34 9184 (3,2) 8.37 (1,4, 6)
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CHLOROMETHANE MOLECULAR DYNAMICS SIMULATION [FTP16]
m MD simulation of the following reaction

CH3Cl + CI™ < CH3Cl+ CI™

m Clusters, and a sparse connection between two clusters are visible.
m (m), (0) & (p) are colored by the distance between C and Cl, Cl, Cl, respectively.
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GALAXY SPECTRA FROM THE SDSS [AAAT09Q]

m Data can be downloaded here® and are preprocessed the same way as [MMVZ 14)].
m We sampled n = 50, 000 points from the first 0.3 million points
» correspond to closer galaxies.

m Embeddings are colored by the blue spectrum magnitude
» correlated to the number of young stars in the galaxy.
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EXPERIMENTS

APPLICATION




INITIALIZER FOR UMAP [MHM18]

The UMAP algorithm works as follow,
m Build alocal fuzzy simplicial complex SCy = (V, E, Z5, - - - , i) from the data X.

» Intheir construction, only 1-skeleton of the simplicial set is considered in the loss
function, so essentially it represents agraph G = (V, E) = SC;.

m Initialize the embedding Y <+ DiffusionMap(G)
m Optimize the following loss function by gradient descent.

Y. = argmin C (p(X), q(Y); SCy)
Y

» Here C(p, q; SCy) is the cross entropy defined on the simplicial set SCy
> p, qisthetransition probability computed on X and Y, respectively.
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INITIALIZER FOR UMAP [MHM18]

m The bad initialization cannot always be fixed by more iterations.
» Inthissimple example, it can. However, one needs way more iterations for it to converge.

m Figure below shows the experiment result of different initialization methods and
choices of hyper-parameters with fixed iterations.
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m Analysis on the sufficient conditions for failure [GZKRO8].
» Focuses on rectangles/cubes.
» Failure defines as obtaining a mapping Y = ¢ (X) that is not affinely equivalent w.r.t.
original data X.

m Functionally independent coordinates [DTCK18].

» If ¢y is arepeated eigendirection of ¢q, -+, dr_1, one can fit &y with local linear
regression (LLR) on predictors ¢ 1 with low leave-one-out errors ry.
» Sequentially fit LLR on ¢y and obtain the coordinates with first few largest r’s.

m Sequential spectral decomposition [GTWO7, BM17].

» Modifying the matrix My constructed for finding each k-th coordinate. ¢y can be
obtained by the first min-eigenvector of M.
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m Time complexity is O(nm$*3) — brute force search for small s.
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m Time complexity is O(nm$*3) — brute force search for small s.

m R, R, in (1) are submodular set functions — optimizing over difference of
submodular functions for large s.
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TIME COMPLEXITY

m Time complexity is O(nms$*3) — brute force search for small s.

B R, Ry in (1) are submodular set functions — optimizing over difference of
submodular functions for large s.

m [DTCK18]has quadraticdependency onsamplesizen,see, *
e.g.,empirical runtime on the right. zw ot

m [GTWO7, BM17] in general has quadratic to cubic time i *,‘
complexity. Convergence depends on the condition num- e — T
ber of the system and eigen-solverused. - B Groty - LR




COMPARISON WITH [DTCK18]

m The embedding chosen by [DTCK 18] is clearly shown to be suboptimal.

m Thisis because the algorithm searches in a sequential fashion; the noise eigenvector
> inthis example appears before the signal eigenvectors e.g., b4 and ¢s.
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CONCLUSION




CONCLUSION

In this work, we
m Formulate the problem mathematically, show that a solution exists (for DM).

m Introduce a data driven loss £ and Independent eigen-coordinates search (IES)
algorithm.

m Have experiments on real and synthetic data, showing the problem is pervasive.
m Analyze the limit of £ forn — co.

d



FUTURE WORKS

1. Extension of IES algorithm to LLE, LTSA & HLLE

» Develop theories for Assumption 1.
» Estimate gradient using coefficient Laplacian [TJ18].




FUTURE WORKS

1. Extension of IES algorithmto LLE, LTSA & HLLE

» Develop theories for Assumption 1.
» Estimate gradient using coefficient Laplacian [TJ18].

2. Manifold optimization on the Grassmannian.

» Instead of searching over fixed coordinates S C [m], one can instead search over all
possible projections.
» £ will be adifference of convex function.
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THANK YOU VERY MUCH!
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SOME INTUITIONS FOR IES PROBLEM




SOME INTUITIONS — |

m Two point clouds X3 ? My, X, ? M, sampled from two manifold w.r.t. same density p.
m The neighborhood graph G(V, E) should be built with similar e.
m Short edges behave like noises.

B B e

Itis possible to remove the defect by constructing a anisotropic kernel, however
m Anisotropic kernel is needed for the convergence of graph Laplacian L [THJ11].

m Difficult to obtain/design such kernel since we do not know M.




SOME INTUITIONS — |l

Another way to think of it is to consider the Rayleigh quotient of the min-eigenvalue
problem. The k-th minimum eigenvalue for graph Laplacian L is

bx = argmin ' Lo = argmin Z (i — @1)2
@ L1 1ill@ll2=1 oL brsillell=1 (4 jyc

B ||@||2 = 1,insome sense it “normalizes” the manifold to equal aspect ratio.
m Thedensity along the short edges are now sparser than the original density p.
m Theterm (@i — @; )2 penalizes the function ¢@(-) parametrized short edges.

W
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How TO CHOOSE (




REGULARIZATION PATH AND CHOOSING (

m Define the leave-one-out regret of point i

D(S, 1) = R(SL; i) — R(S; ML)

with St = = argmaxscm]:|s|=s:1es R (S; 1)

m O(S,1i)isthe gainin Rif all the other points [n]\{i} choose the un-regularized optimal
coordinates set in terms of point 1.

m Theoptimal ¢’ is then chosen by

¢’ = max Percentile ({D(S4(¢), 1)} ;, «) <0
>0
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