Selecting the independent coordinates of manifolds with large aspect ratios

Yu-Chia Chen (yuchaz@uw. edu)
Department of Electrical \& Computer Engineering University of WAshington
October 22, 2019

■ Joint work with Marina Meila.

■ Please check our paper [CM19] for more detail:

- Yu-Chia Chen and Marina Meila. "Selecting the independent coordinates of manifolds with large aspect ratios". NeurlPS'19. (To appear, also on arXiv:1907.01651).

■ Paper, Slides \& Poster can be downloaded here ${ }^{1}$.

- Codes will be made available soon and can also be accessed here ${ }^{1}$ when it is ready.

[^0]
INTRODUCTION

INTRODUCTION

Basic setup

Given data $\mathbf{X} \in \mathbb{R}^{n \times D}$ sampled from a smooth d-dimensional submanifold $\mathcal{M} \subset \mathbb{R}^{\mathrm{D}}$. Manifold Learning algorithms map \mathbf{x}_{i}, $\mathfrak{i} \in[n]$ to $\mathbf{y}_{i}=\phi\left(\mathbf{x}_{i}\right) \in \mathbb{R}^{s}$, where $\mathrm{d} \leqslant \mathrm{s} \ll \mathrm{D}$, thus reducing the dimension of the data \mathbf{X} while preserving (some of) its properties.

A family of Manifold learning algorithms fail apparently or suffer from artifacts when data manifold \mathcal{N} is long and thin, e.g., when it has aspect ratio >2 for 2D strip.

EXAMPLE WITH DIFFUSION MAP EMBEDDING — I

EXAMPLE WITH DIFFUSION MAP EMBEDDING - II

Image source ${ }^{2}$.

[^1]The family of algorithms suffer from the artifacts
■ Laplacian eigenmap (LE) [BNO3]

- Diffusion map (DM) [CLO6]

■ Locally linear embedding (LLE) [RSOO]

- Local tangent space alignment (LTSA) [ZZO2]

■ Hessian LLE (HLLE) [DGO3]

In this work, we focus on diffusion map algorithm. But we will also discuss the possible extensions \& challenges to LTSA \& HLLE algorithms.

1. Build neighborhood graph $G=(V, E)$.

- ε-ball kernel.
- knearest neighbor (kNN) kernel.
- self-tuning kernel (e.g., continuous kNN [BS16]).

Construct matrix M from neighborhood graph G. Solve the min-eigen problem of \mathbf{M}.

1. Build neighborhood graph $G=(V, E)$.

- ε-ball kernel.
- knearest neighbor (kNN) kernel.
- self-tuning kernel (e.g., continuous kNN [BS16]).

2. Construct matrix \mathbf{M} from neighborhood graph G .
3. Build neighborhood graph $G=(V, E)$.

- ε-ball kernel.
- knearest neighbor (kNN) kernel.
- self-tuning kernel (e.g., continuous kNN [BS16]).

2. Construct matrix \mathbf{M} from neighborhood graph G .
3. Solve the min-eigen problem of \mathbf{M}.

- m-dimensional embedding is obtained from the $2^{\text {nd }}$ to $m+1^{\text {th }}$ minimum eigenvectors, i.e., $\phi=\left[\phi_{1}, \cdots, \phi_{m}\right]$
us an optimal embedding.

1. Build neighborhood graph $G=(V, E)$.

- ε-ball kernel.
- knearest neighbor (kNN) kernel.
- self-tuning kernel (e.g., continuous kNN [BS16]).

2. Construct matrix \mathbf{M} from neighborhood graph G .
3. Solve the min-eigen problem of \mathbf{M}.

- m-dimensional embedding is obtained from the $2^{\text {nd }}$ to $m+1^{\text {th }}$ minimum eigenvectors, i.e., $\phi=\left[\phi_{1}, \cdots, \phi_{\mathrm{m}}\right]$
- In this work, we will show that the coordinates chosen by the above criteria will not give us an optimal embedding.

1. Build neighborhood graph $G(V, E)$ with 3ε-ball kernel.

- $V=[n], E=\left\{(i, j) \in V^{2}:\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\| \leqslant 3 \varepsilon\right\}$.

2. Compute kernel matrix $[\mathbf{K}]_{i j}=\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \varepsilon^{2}\right)$ and the renormalized graph Laplacian L

$$
\begin{gathered}
\mathbf{L}=\mathbf{I}-\mathbf{W}^{-1} \mathbf{D}^{-1} \mathbf{K} \mathbf{D}^{-1} \\
\text { where } \mathbf{D}=\operatorname{diag}\left(\mathbf{K} \mathbf{1}_{\mathrm{n}}\right) \text { and } \mathbf{W}=\operatorname{diag}\left(\mathbf{D}^{-1} \mathbf{K D}^{-1} \mathbf{1}_{\mathrm{n}}\right)
\end{gathered}
$$

3. An m dimensional embedding is obtained from the $2^{\text {nd }}$ to $m+1^{\text {th }}$ min-eigenvectors of the graph Laplacian \mathbf{L}.

- Coordinates chosen by the above criteria will suffer from the IES artifacts.

INTRODUCTION

Motivating example
\mathbf{W}

The eigenvalues \& eigen-functions of Laplace-Beltrami operator $\Delta_{\mathcal{M}}$ (Neumann boundary condition) on 2D long strip, measurement is (width, height) $=(\mathrm{W}, \mathrm{H})$, are

$$
\begin{aligned}
\lambda_{k_{1}, k_{2}} & =\left(\frac{k_{1} \pi}{W}\right)^{2}+\left(\frac{k_{2} \pi}{H}\right)^{2} \\
\phi_{k_{1}, k_{2}}(w, h) & =\cos \left(\frac{k_{1} \pi w}{W}\right) \cos \left(\frac{k_{2} \pi h}{H}\right)
\end{aligned}
$$

$\phi_{1,0}, \phi_{0,1}$ are independent thus should be chosen, while, e.g., $\phi_{1,0}, \phi_{2,0}$ are not.

For example, let $\mathrm{H}=1, \mathrm{~W}=2 \pi$, we have

	$\mathrm{k}_{1}=0$	$\mathrm{k}_{1}=1$	$\mathrm{k}_{1}=2$	$\mathrm{k}_{1}=3$	$\mathrm{k}_{1}=4$	$\mathrm{k}_{1}=5$	$\mathrm{k}_{1}=6$	$\mathrm{k}_{1}=7$
$\mathrm{k}_{2}=0$	0	$1 / 21 \mathrm{st}$	12 nd	$3 / 23 \mathrm{rd}$	24 th	$5 / 25 \mathrm{th}$	36 th	$7 / 28 \mathrm{th}$
$\mathrm{k}_{2}=1$	$\pi 7 \mathrm{th}$	\cdots						

[^2]■ $\lambda_{0,1}$ corresponds to the $\lceil\mathrm{W} / \mathrm{H}\rceil$-th ($=7$-th here) eigenvalue

- ϕ_{1}, ϕ_{2} are orthogonal, but not functionally independent.
= $\phi_{1}, \phi_{[W / H\rceil}$ are functionally independent, therefore $\{1,\lceil\mathrm{~W} / \mathrm{H}\rceil\}$

For example, let $\mathrm{H}=1, \mathrm{~W}=2 \pi$, we have

	$\mathrm{k}_{1}=0$	$\mathrm{k}_{1}=1$	$\mathrm{k}_{1}=2$	$\mathrm{k}_{1}=3$	$\mathrm{k}_{1}=4$	$\mathrm{k}_{1}=5$	$\mathrm{k}_{1}=6$	$\mathrm{k}_{1}=7$
$\mathrm{k}_{2}=0$	0	$1 / 21 \mathrm{st}$	12 nd	$3 / 23 \mathrm{rd}$	24 th	$5 / 25 \mathrm{th}$	36 th	$7 / 28$ th
$\mathrm{k}_{2}=1$	$\pi 7 \mathrm{th}$	\cdots						

■ Sort ϕ_{k} by λ_{k}, the first two eigenvalues are $\lambda_{1,0}$ and $\lambda_{2,0}$.
■ $\lambda_{0,1}$ corresponds to the $\lceil\mathrm{W} / \mathrm{H}\rceil$-th ($=7$-th here) eigenvalue.

- ϕ_{1}, ϕ_{2} are orthogonal, but not functionally independent.

■ $\phi_{1}, \phi_{\lceil W / H\rceil}$ are functionally independent, therefore $\{1,\lceil W / H\rceil\}$
 should be chosen.

■ (Global) functional dependency: rank $\mathrm{D} \phi<\mathrm{d}$ on an open subset or all of \mathcal{M} (yellow curve in top).

- The knot: rank $\mathrm{D} \phi<\mathrm{d}$ at an isolated point (middle).
- The crossing: $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is not invertible at \mathbf{x}, but \mathcal{M} can be covered with open sets U such that the restriction $\phi: \mathrm{U} \rightarrow \phi(\mathrm{U})$ has full rank d (bottom).
- Existence of solution for LE/DM has been proved [Bat14]. - However, s, the number of eigenfunctions needed, may exceed the Whitnevembedding dimension ($\leqslant 2 d$) and that s may depend on injectivity radius, aspect ratio, etc.

■ (Global) functional dependency: rank $\mathrm{D} \phi<\mathrm{d}$ on an open subset or all of \mathcal{M} (yellow curve in top).

■ The knot: rank $\mathrm{D} \phi<\mathrm{d}$ at an isolated point (middle).

- The crossing: $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is not invertible at \mathbf{x}, but \mathcal{M} can be covered with open sets U such that the restriction $\phi: \mathrm{U} \rightarrow \phi(\mathrm{U})$ has full rank d (bottom).

■ Existence of solution for LE/DM has been proved [Bat14].

- However, s, the number of eigenfunctions needed, may exceed the Whitney embedding dimension ($\leqslant 2 \mathrm{~d}$), and that s may depend on injectivity radius, aspect ratio, etc.

RIEMANNIAN METRIC

- Associate with $\phi(\mathcal{M})$ a pushforward Riemannian metric $\mathbf{g}_{* \phi}$ that preserves the geometry of (\mathcal{M}, g). Here $\mathrm{g}_{* \phi}$ is defined by

$$
\begin{aligned}
& \langle\mathbf{u}, \mathbf{v}\rangle_{g_{* \phi}(\mathbf{x})}=\left\langle D \phi^{-1}(\mathbf{x}) \mathbf{u}, D \phi^{-1}(\mathbf{x}) \mathbf{v}\right\rangle_{\mathrm{g}(\mathbf{x})} \\
& \quad \text { for all } \mathbf{u}, \mathbf{v} \in \mathcal{T}_{\phi(\mathbf{x})} \phi(\mathcal{M})
\end{aligned}
$$

- $\mathcal{T}_{\mathbf{x}} \mathcal{M}, \mathcal{T}_{\phi(\mathbf{x})} \phi(\mathcal{M})$ are tangent subspaces.
- $\mathrm{D}^{-1}(\mathbf{x})$ maps vectors from $\mathcal{T}_{\phi(\mathbf{x})} \phi(\mathcal{M})$ to $\mathcal{T}_{\mathrm{x}} \mathcal{M}$.
- $g_{* \phi}\left(\mathbf{x}_{i}\right)$ in local coordinate is a PSD matrix $\mathbf{G}(\mathfrak{i})$

$$
\langle\mathbf{u}, \mathbf{v}\rangle_{g_{* \phi}\left(x_{i}\right)}=\mathbf{u}^{\top} \mathbf{G}(i) \mathbf{v}
$$

■ Local Coordinate $\mathbf{U}(\mathfrak{i})$ (tangent plane) on embedding $\mathbf{y}_{i}=\phi\left(\mathbf{x}_{i}\right)$ and distortion $\boldsymbol{\Sigma}(i)$ can be obtained by SVD of co-metric $\mathbf{H}(i)$ $=$ pseudo_inv(G(i)).

■ Local coordinate $\mathbf{U}(\mathrm{i})$ projects onto coordinates set S is

$$
\mathbf{U}_{\mathrm{S}}(\mathfrak{i})=\mathbf{U}(i)\left[S_{,}:\right]
$$

Loss function based on volume

W

The loss function

$$
\begin{equation*}
\mathfrak{L}(S ; \zeta)=\underbrace{\frac{1}{n} \sum_{i=1}^{n} \log \sqrt{\operatorname{det}\left(\mathbf{U}_{S}(i)^{\top} \mathbf{U}_{S}(i)\right)}}_{\Re_{1}(S)=\frac{1}{n} \sum_{i=1}^{n} \mathfrak{R}_{1}(S ; i)}-\underbrace{\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{d} \log \left\|\mathbf{u}_{k}^{S}(i)\right\|_{2}}_{\Re_{2}(S)=\frac{1}{n} \sum_{i=1}^{n} \Re_{2}(S ; i)}-\zeta \sum_{k \in S} \lambda_{k} \tag{1}
\end{equation*}
$$

The chosen independent coordinates

$$
S_{*}(\zeta)=\underset{S \subseteq[m]|;|S|=s ; 1 \in S}{\operatorname{argmax}} \mathfrak{L}(S ; \zeta)
$$

■ The search space: $S_{*}(\zeta)=\operatorname{argmax}_{S \subseteq[m] ;|S|=s ; 1 \in S} \mathfrak{L}(S ; \zeta)$

- S_{*} exists but cannot be computed analytically [Bat14].
- Start with larger set $[m]=\{1, \cdots, m\}$ of eigenvector of \mathbf{L}, find coordinates $S \subseteq[m]$ with $|S|=s$ and force the slowest varying coordinate to always be chosen , i.e., $1 \in S$.

■ The search space: $S_{*}(\zeta)=\operatorname{argmax}_{S \subseteq[m] ;|S|=s ; 1 \in S} \mathfrak{L}(S ; \zeta)$

- S_{*} exists but cannot be computed analytically [Bat14].
- Start with larger set $[m]=\{1, \cdots, m\}$ of eigenvector of \mathbf{L}, find coordinates $S \subseteq[m]$ with $|S|=s$ and force the slowest varying coordinate to always be chosen, i.e., $1 \in S$.
$■ \mathfrak{R}=\mathfrak{R}_{1}-\mathfrak{R}_{2}=(\ldots)$
- Projected volume of a unit parallelogram in $\mathcal{T}_{\phi s\left(x_{i}\right)} \phi_{S}(\mathcal{M})$

$$
\operatorname{Vol}(i ; S)=\frac{\sqrt{\operatorname{det}\left(\mathbf{U}_{S}(i)^{\top} \mathbf{U}_{S}(i)\right)}}{\prod_{k=1}^{\mathrm{d}}\left\|\mathbf{u}_{\mathrm{k}}^{\mathrm{S}}(\mathfrak{i})\right\|_{2}}
$$

- Since ϕ_{S} is not an isometry \rightarrow remove the local distortions $\boldsymbol{\Sigma}(i)$ introduced by ϕ from the estimated rank of ϕ at \mathbf{x}.

■ The search space: $S_{*}(\zeta)=\operatorname{argmax}_{S \subseteq[m] ;|S|=s ; 1 \in S} \mathfrak{L}(S ; \zeta)$

- S_{*} exists but cannot be computed analytically [Bat14].
- Start with larger set $[m]=\{1, \cdots, m\}$ of eigenvector of \mathbf{L}, find coordinates $S \subseteq[m]$ with $|S|=s$ and force the slowest varying coordinate to always be chosen, i.e., $1 \in S$.
$■ \mathfrak{R}=\mathfrak{R}_{1}-\mathfrak{R}_{2}=(\ldots)$
- Projected volume of a unit parallelogram in $\mathcal{T}_{\phi s\left(x_{i}\right)} \phi_{s}(\mathcal{M})$

$$
\operatorname{Vol}(i ; S)=\frac{\sqrt{\operatorname{det}\left(\mathbf{U}_{S}(i)^{\top} \mathbf{U}_{S}(i)\right)}}{\prod_{k=1}^{\mathrm{d}}\left\|\mathbf{u}_{k}^{\mathrm{S}}(\mathfrak{i})\right\|_{2}}
$$

- Since ϕ_{S} is not an isometry \rightarrow remove the local distortions $\boldsymbol{\Sigma}(i)$ introduced by ϕ from the estimated rank of ϕ at \mathbf{x}.
- Regularization term, consisting of the sum of eigenvalues $\sum_{k \in S} \lambda_{k}$ of the graph Laplacian \mathbf{L}, is added to penalize the high frequency coordinates.

PSEUDO-CODE FOR BRUTE-FORCE SEARCH

```
Algorithm 2: Independent Eigencoordinates Search
IndEigenSearch ( \(\mathbf{X}, \varepsilon, d, s, \zeta\) )
\(\mathbf{Y} \in \mathbb{R}^{\boldsymbol{n} \times m}, \mathbf{L}, \lambda \in \mathbb{R}^{m} \leftarrow \operatorname{DiffMap}(\mathbf{X}, \varepsilon)\)
\(\mathbf{U}(\mathrm{i}), \cdots, \mathbf{U}(\mathrm{n}) \leftarrow \operatorname{RMetric}(\mathbf{Y}, \mathbf{L}, \mathrm{d})\)
for \(S \in\left\{S^{\prime} \subseteq[m]:\left|S^{\prime}\right|=s, 1 \in S^{\prime}\right\}\) do
    \(\Re_{1}(S) \leftarrow 0 ; \Re_{2}(S) \leftarrow 0\)
    for \(i=1, \cdots, n\) do
        \(\mathbf{U}_{S}(i) \leftarrow \mathbf{U}(i)[S,:]\)
        \(\mathfrak{R}_{1}(S)+=\frac{1}{2 n} \cdot \log \operatorname{det}\left(\mathbf{U}_{S}(i)^{\top} \mathbf{U}_{S}(i)\right)\)
        \(\Re_{2}(S)+=\frac{1}{n} \cdot \sum_{k=1}^{d} \log \left\|u_{k}^{S}(i)\right\|_{2}\)
        end
        \(\mathfrak{L}(S ; \zeta)=\mathfrak{R}_{1}(S)-\mathfrak{R}_{2}(S)-\zeta \sum_{k \in S} \lambda_{k}\)
end
\(S_{*}=\operatorname{argmax}_{S} \mathfrak{L}(S ; \zeta)\)
Return: Independent eigencoordinates set \(S_{*}\)

\section*{LIMIT OF LOSS \(\mathfrak{L}\)}
\(\mathbf{W}\)

\section*{Assumptions}
1. The manifold \(\mathcal{M}\) is compact of class \(\mathcal{C}^{3}\), and there exists a set \(S\), with \(|S|=s\) so that \(\phi S\) is a smooth embedding of \(\mathcal{M}\) in \(\mathbb{R}^{s}\).
2. The data are sampled from a distribution on \(\mathcal{M}\) continuous w.r.t. \(\mu_{\mathcal{M}}\) with density \(p\).
3. The estimate of \(\mathbf{H}_{\mathrm{S}}\) in Algorithm 1 computed w.r.t. the embedding \(\phi_{\mathrm{S}}\) is consistent.

\section*{Discussion}

■ From [Bat14] that Assumption 1 is satisfied for the LE/DM embedding.
- Assumptions 2, 3 are minimal requirements ensuring that limits of our quantities exist.

Let \(j_{S}(\mathbf{y})=1 / \operatorname{Vol}\left(\mathbf{U}_{S}(\mathbf{y}) \boldsymbol{\Sigma}_{S}^{1 / 2}(\mathbf{y})\right)\) and \(\left.\tilde{\jmath}_{S}(\mathbf{y})=\prod_{\mathrm{k}=1}^{\mathrm{d}}\left(\left\|\mathrm{u}_{\mathrm{k}}^{\mathrm{S}}(\mathbf{y})\right\| \sigma_{\mathrm{k}}(\mathbf{y})\right)^{1 / 2}\right)^{-1}\), we study the limit of \(\mathfrak{L}\) (Theorem 1 next page).

\section*{Assumptions}
1. The manifold \(\mathcal{M}\) is compact of class \(\mathcal{C}^{3}\), and there exists a set \(S\), with \(|S|=s\) so that \(\phi S\) is a smooth embedding of \(\mathcal{M}\) in \(\mathbb{R}^{s}\).
2. The data are sampled from a distribution on \(\mathcal{M}\) continuous w.r.t. \(\mu_{\mathcal{M}}\) with density \(p\).
3. The estimate of \(\mathbf{H}_{\mathrm{S}}\) in Algorithm 1 computed w.r.t. the embedding \(\phi_{\mathrm{S}}\) is consistent.

\section*{Discussion}

■ From [Bat14] that Assumption 1 is satisfied for the LE/DM embedding.
- Assumptions 2, 3 are minimal requirements ensuring that limits of our quantities exist.

Let \(j_{S}(\mathbf{y})=1 / \operatorname{Vol}\left(\mathbf{U}_{S}(\mathbf{y}) \boldsymbol{\Sigma}_{S}^{1 / 2}(\mathbf{y})\right)\) and \(\left.\tilde{\jmath}_{S}(\mathbf{y})=\prod_{\mathrm{k}=1}^{\mathrm{d}}\left(\left\|\mathrm{u}_{\mathrm{k}}^{\mathrm{S}}(\mathbf{y})\right\| \sigma_{\mathrm{k}}(\mathbf{y})\right)^{1 / 2}\right)^{-1}\), we study the limit of \(\mathfrak{L}\) (Theorem 1 next page).

LIMIT OF \(\mathfrak{L}-\mathfrak{R}=\Re_{1}-\mathfrak{R}_{2}\)

\section*{THEOREM 1 (LIMIT OF R)}

Under Assumptions 1-3,
\[
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i} \ln \mathfrak{R}\left(S, x_{i}\right)=\mathfrak{R}(S, \mathcal{M})
\]
and
\[
\mathfrak{R}(S, \mathcal{M})=-\int_{\phi_{S}(\mathcal{M})} \ln \frac{\mathfrak{j}_{S}(\mathbf{y})}{\tilde{\mathcal{J}}_{S}(\mathbf{y})} \mathfrak{p}\left(\phi_{S}^{-1}(\mathbf{y})\right) \mathrm{j}_{S}(\mathbf{y}) \mathrm{d} \mu_{\Phi_{S}(\mathcal{M})}(\mathbf{y}):=-\mathrm{D}\left(\mathrm{pj}_{S} \| p \tilde{\mathfrak{j}} \mathrm{~S}\right)
\]

■ \(\mathrm{D}(\cdot \| \cdot)\) is a KL divergence, where the measures defined by \(\mathrm{pj}_{\mathrm{S}}\), p Ĩs normalize to different values.
- Because \(j_{s} \geqslant \tilde{\jmath}_{s}\) the divergence \(D\) is always positive

LIMIT OF \(\mathfrak{L}\) — Regularization term

\section*{Spectral convergence of L [BN07, vLBB08]}

The smoothness penalty converges to
\[
\begin{equation*}
\phi_{\mathrm{k}}^{\top} \mathbf{L} \phi_{\mathrm{k}} \rightarrow \int_{\mathcal{M}}\left\|\operatorname{grad} \phi_{\mathrm{k}}(\mathbf{x})\right\|_{2}^{2} \mathrm{~d} \mu(\mathcal{M}) \tag{2}
\end{equation*}
\]

Since \(\phi_{\mathrm{k}}\) satisfies the Neumann boundary condition (for LE/DM).

Discussion on the extension to LLE, LTSA and HLLE

\section*{Spectral convergence of L [BN07, vLBB08]}

The smoothness penalty converges to
\[
\begin{equation*}
\phi_{\mathrm{k}}^{\top} \mathbf{L} \phi_{\mathrm{k}} \rightarrow \int_{\mathcal{M}}\left\|\operatorname{grad} \phi_{\mathrm{k}}(\mathbf{x})\right\|_{2}^{2} \mathrm{~d} \mu(\mathcal{M}) \tag{2}
\end{equation*}
\]

Since \(\phi_{\mathrm{k}}\) satisfies the Neumann boundary condition (for LE/DM).

\section*{Discussion on the extension to LLE, LTSA and HLLE}
1. Unlike LE/DM, no theory has been developed for Assumption 1.
2. LLE, LTSA and HLLE converge to different differential operators (with different boundary conditions) [TJ18], one has to modify the regularization term in (2) to get a better estimate of smoothness.

EXPERIMENTS

\section*{EXPERIMENTS}

SYNTHETIC DATASETS
\(\mathbf{W}\)

■ The synthetic 2D long strip with aspect ratio \(\mathrm{W} / \mathrm{H}=2 \pi\).
■ From the analysis before, the corresponding slowest varying unique eigendirections are \(S_{*}=\{1,\lceil W / H\rceil\}=\{1,7\}\).

- The synthetic High torus dataset: example of the minimum embedding dimension \(s\) is greater than the intrinsic dimension d.
■ \(S_{*}=\{1,4,5\}\)

(e) Original data \(\mathbf{X}\)

(f) \(\phi_{[3]}\)

(g) \(\phi_{S_{*}}\)

(h) Regularization path

■ The synthetic Three torus dataset: example of manifold having higher intrinsic dimension d, which cannot be visualized easily.
■ \(S_{*}=\{1,2,5,10\}\)

(i) Original data \(\mathbf{X}_{\{3,4\}}\)

(j) \(\phi_{\{3,4\}}\)

(k) \(\phi_{S_{\{3,4\}}^{*}}\)

(L) Regularization path

\section*{EXTRA EXPERIMENTS}

Experiments on more synthetic datasets can be found on the paper [CM19].


\section*{EXPERIMENTS}

Real datasets
\(\mathbf{w}\)
\begin{tabular}{lrrrrrr}
\hline & n & D & deg \(_{\text {avg }}\) & \((\mathrm{s}, \mathrm{d})\) & \(\mathrm{t}(\mathrm{sec})\) & \(\mathrm{S}^{*}\) \\
\hline SDSS[AAA+09] & 299 k & 3750 & 144.91 & \((2,2)\) & 106.05 & \((1,3)\) \\
Aspirin [CTS + 17] & 212 k & 244 & 101.03 & \((4,3)\) & 85.11 & \((1,2,3,7)\) \\
Ethanol & 555 k & 102 & 107.27 & \((3,2)\) & 233.16 & \((1,2,4)\) \\
Malondialdehyde & 993 k & 96 & 106.51 & \((3,2)\) & 459.53 & \((1,2,3)\) \\
\(\mathrm{CH}_{3} \mathrm{Cl}[\mathrm{FTP} 16]\) & 23 k & 34 & 91.84 & \((3,2)\) & 8.37 & \((1,4,6)\) \\
\hline & & & \multicolumn{4}{c}{ Selected eigenvectors \(\uparrow\)}
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline & n & D & deg \(_{\text {avg }}\) & \((\mathrm{s}, \mathrm{d})\) & \(\mathrm{t}(\mathrm{sec})\) & \(\mathrm{S}^{*}\) \\
\hline SDSS [AAA \(^{+09]}\) & 299 k & 3750 & 144.91 & \((2,2)\) & 106.05 & \((1,3)\) \\
Aspirin [CTS+17] & 212 k & 244 & 101.03 & \((4,3)\) & 85.11 & \((1,2,2,7)\) \\
Ethanol & 555 k & 102 & 107.27 & \((3,2)\) & 233.16 & \((1,2,4)\) \\
Malondialdehyde & 993 k & 96 & 106.51 & \((3,2)\) & 459.53 & \((1,2,3)\) \\
CH \(_{3}\) Cl [FTP16] & 23 k & 34 & 91.84 & \((3,2)\) & 8.37 & \((1,4,6)\) \\
\hline & & & \multicolumn{4}{c}{ Selected eigenvectors \(\uparrow\)}
\end{tabular}

\section*{CHLOROMETHANE MOLECULAR DYNAMICS SIMULATION [FTP16]}

■ MD simulation of the following reaction
\[
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{-} \leftrightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{-}
\]

■ Clusters, and a sparse connection between two clusters are visible.
\(\square(m),(0) \&(p)\) are colored by the distance between C and \(\mathrm{Cl}, \mathrm{Cl}, \mathrm{Cl}\), respectively.


\section*{GALAXY SPECTRA FROM THE SDSS [AAA+ Og]}

■ Data can be downloaded here \({ }^{3}\) and are preprocessed the same way as [MMVZ16].
■ We sampled \(n=50\), 000 points from the first 0.3 million points
- correspond to closer galaxies.

■ Embeddings are colored by the blue spectrum magnitude
- correlated to the number of young stars in the galaxy.

(q) \(\phi_{[2]}\)

(r) \(\phi_{S_{*}}\)

\footnotetext{
\({ }^{3}\) http: / /sdss.org
}

\section*{EXPERIMENTS}

ApPLICATION

The UMAP algorithm works as follow,
■ Build a local fuzzy simplicial complex \(\mathrm{SC}_{\mathrm{k}}=\left(\mathrm{V}, \mathrm{E}, \Sigma_{2}, \cdots, \Sigma_{k}\right)\) from the data \(\mathbf{X}\).
- In their construction, only 1 -skeleton of the simplicial set is considered in the loss function, so essentially it represents a graph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})=\mathrm{SC}_{1}\).

■ Initialize the embedding \(\mathbf{Y}_{0} \leftarrow\) DiffusionMap(G)
■ Optimize the following loss function by gradient descent.
\[
\mathbf{Y}_{*}=\underset{\mathbf{Y}}{\operatorname{argmin}} C\left(p(\mathbf{X}), q(\mathbf{Y}) ; S C_{1}\right)
\]
- Here \(\mathrm{C}\left(\mathrm{p}, \mathrm{q} ; \mathrm{SC}_{1}\right)\) is the cross entropy defined on the simplicial set \(\mathrm{SC}_{1}\)
- p, q is the transition probability computed on \(\mathbf{X}\) and \(\mathbf{Y}\), respectively.

The UMAP algorithm works as follow,
■ Build a local fuzzy simplicial complex \(\mathrm{SC}_{\mathrm{k}}=\left(\mathrm{V}, \mathrm{E}, \Sigma_{2}, \cdots, \Sigma_{k}\right)\) from the data \(\mathbf{X}\).
- In their construction, only 1 -skeleton of the simplicial set is considered in the loss function, so essentially it represents a graph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})=\mathrm{SC}_{1}\).

■ Initialize the embedding \(\mathbf{Y}_{0} \leftarrow\) DiffusionMap(G)
■ Optimize the following loss function by gradient descent.
\[
\mathbf{Y}_{*}=\underset{\mathbf{Y}}{\operatorname{argmin}} C\left(p(\mathbf{X}), q(\mathbf{Y}) ; S C_{1}\right)
\]
- Here \(\mathrm{C}\left(\mathrm{p}, \mathrm{q} ; \mathrm{SC}_{1}\right)\) is the cross entropy defined on the simplicial set \(\mathrm{SC}_{1}\)
- p, q is the transition probability computed on \(\mathbf{X}\) and \(\mathbf{Y}\), respectively.

INITIALIZER FOR UMAP [MHM18]

■ The bad initialization cannot always be fixed by more iterations.
- In this simple example, it can. However, one needs way more iterations for it to converge.

■ Figure below shows the experiment result of different initialization methods and choices of hyper-parameters with fixed iterations.

kneigh: \# of neighbors in kNN graph.


ReLATED works

\section*{\(\mathbf{W}\)}
- Analysis on the sufficient conditions for failure [GZKRO8].
- Focuses on rectangles/cubes.
- Failure defines as obtaining a mapping \(\mathbf{Y}=\phi(\mathbf{X})\) that is not affinely equivalent w.r.t. original data \(\mathbf{X}\).

- Analysis on the sufficient conditions for failure [GZKRO8].
- Focuses on rectangles/cubes.
- Failure defines as obtaining a mapping \(\mathbf{Y}=\phi(\mathbf{X})\) that is not affinely equivalent w.r.t. original data \(\mathbf{X}\).
■ Functionally independent coordinates [DTCK18].
- If \(\phi_{\mathrm{k}}\) is a repeated eigendirection of \(\phi_{1}, \cdots, \phi_{\mathrm{k}-1}\), one can fit \(\phi_{\mathrm{k}}\) with local linear regression (LLR) on predictors \(\phi_{[k-1]}\) with low leave-one-out errors \(r_{k}\).
- Sequentially fit LLR on \(\phi_{k}\) and obtain the coordinates with first few largest \(r_{k}\) 's.
- Sequential spectral decomposition [GTW07, BM17].
- Modifying the matrix \(\mathbf{M}_{k}\) constructed for finding each \(k\)-th coordinate. \(\phi_{k}\) can be obtained by the first min-eigenvector of \(\mathbf{M}_{\mathrm{k}}\).
- Analysis on the sufficient conditions for failure [GZKR08].
- Focuses on rectangles/cubes.
- Failure defines as obtaining a mapping \(\mathbf{Y}=\phi(\mathbf{X})\) that is not affinely equivalent w.r.t. original data \(\mathbf{X}\).
■ Functionally independent coordinates [DTCK18].
- If \(\phi_{\mathrm{k}}\) is a repeated eigendirection of \(\phi_{1}, \cdots, \phi_{\mathrm{k}-1}\), one can fit \(\phi_{\mathrm{k}}\) with local linear regression (LLR) on predictors \(\phi_{[k-1]}\) with low leave-one-out errors \(r_{k}\).
- Sequentially fit LLR on \(\phi_{k}\) and obtain the coordinates with first few largest \(r_{k}\) 's.

■ Sequential spectral decomposition [GTW07, BM17].
- Modifying the matrix \(\mathbf{M}_{\mathrm{k}}\) constructed for finding each k -th coordinate. \(\phi_{\mathrm{k}}\) can be obtained by the first min-eigenvector of \(\mathbf{M}_{\boldsymbol{k}}\).

\section*{TIME COMPLEXITY}
- Time complexity is \(\mathcal{O}\left(\mathrm{nm}^{\mathrm{s}+3}\right) \rightarrow\) brute force search for small s .
- Time complexity is \(\mathcal{O}\left(\mathrm{nm}^{\mathrm{s}+3}\right) \rightarrow\) brute force search for small s .

■ \(\mathfrak{R}_{1}, \Re_{2}\) in (1) are submodular set functions \(\rightarrow\) optimizing over difference of submodular functions for large s.

- Time complexity is \(\mathcal{O}\left(\mathrm{nm}^{\mathrm{s}+3}\right) \rightarrow\) brute force search for small s .

■ \(\Re_{1}, \Re_{2}\) in (1) are submodular set functions \(\rightarrow\) optimizing over difference of submodular functions for large s.

■ [DTCK18] has quadratic dependency on sample size \(\mathfrak{n}\), see, e.g., empirical runtime on the right.

■ [GTW07, BM17] in general has quadratic to cubic time complexity. Convergence depends on the condition number of the system and eigen-solver used.


\section*{Comparison with [DTCK18]}

■ The embedding chosen by [DTCK18] is clearly shown to be suboptimal.
■ This is because the algorithm searches in a sequential fashion; the noise eigenvector \(\phi_{2}\) in this example appears before the signal eigenvectors e.g., \(\phi_{4}\) and \(\phi_{5}\).

(u) \(\phi_{S_{*}}\) by [DTCK18]

(v) Leave one out error

\section*{CONCLUSION}

In this work, we
■ Formulate the problem mathematically, show that a solution exists (for DM).
- Introduce a data driven loss \(\mathfrak{L}\) and Independent eigen-coordinates search (IES) algorithm.
■ Have experiments on real and synthetic data, showing the problem is pervasive.
■ Analyze the limit of \(\mathfrak{L}\) for \(\mathfrak{n} \rightarrow \infty\).
1. Extension of IES algorithm to LLE, LTSA \& HLLE
- Develop theories for Assumption 1.
- Estimate gradient using coefficient Laplacian [TJ18].
1. Extension of IES algorithm to LLE, LTSA \& HLLE
- Develop theories for Assumption 1.
- Estimate gradient using coefficient Laplacian [TJ18].
2. Manifold optimization on the Grassmannian.
- Instead of searching over fixed coordinates \(S \subset[m]\), one can instead search over all possible projections.
- \(\mathfrak{L}\) will be a difference of convex function.


\section*{THANK YOU VERY MUCH!}

\section*{References I}
[AAA \({ }^{+}\)09] Kevork N Abazajian, Jennifer K Adelman-McCarthy, Marcel A Agüeros, Sahar S Allam, Carlos Allende Prieto, Deokkeun An, Kurt SJ Anderson, Scott F Anderson, James Annis, Neta A Bahcall, et al.
The seventh data release of the sloan digital sky survey. The Astrophysical Journal Supplement Series, 182(2):543, 2009.
[Bat14] Jonathan Bates.
The embedding dimension of Laplacian eigenfunction maps.
Applied and Computational Harmonic Analysis, 37(3):516-530, November 2014.
[BM17] Yochai Blau and Tomer Michaeli.
Non-Redundant Spectral Dimensionality Reduction.
ArXiv, abs/1612.03412, 2017.
[BN03] Mikhail Belkin and Partha Niyogi.
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 15(6):1373-1396, June 2003.

References II
[BN07] Mikhail Belkin and Partha Niyogi.
Convergence of laplacian eigenmaps.
In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 129-136. MIT Press, 2007.
[BS16] Tyrus Berry and Timothy Sauer.
Consistent Manifold Representation for Topological Data Analysis. arXiv:1606.02353 [math], June 2016.
[CLO6] Ronald R. Coifman and Stéphane Lafon.
Diffusion maps.
Applied and Computational Harmonic Analysis, 21(1):5-30, July 2006.
[CM19] Yu-Chia Chen and Marina Meila?
Selecting the independent coordinates of manifolds with large aspect ratios. arXiv:1907.01651 [cs, stat], July 2019.

\section*{References III}
[CTS+ 17] Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and Klaus-Robert Müller.
Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.
[DG03] David L. Donoho and Carrie Grimes.
Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data.
Proceedings of the National Academy of Sciences, 100(10):5591-5596, May 2003.
[DTCK18] Carmeline J Dsilva, Ronen Talmon, Ronald R Coifman, and Ioannis G Kevrekidis. Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study.
Applied and Computational Harmonic Analysis, 44(3):759-773, 2018.
[FTP16] Kelly L. Fleming, Pratyush Tiwary, and Jim Pfaendtner.
New approach for investigating reaction dynamics and rates with ab initio calculations.
Jornal of Physical Chemistry A, 120(2):299-305, 2016.
[GTW07] Samuel Gerber, Tolga Tasdizen, and Ross Whitaker.
Robust Non-linear Dimensionality Reduction Using Successive 1-dimensional Laplacian Eigenmaps.
In Proceedings of the 24th International Conference on Machine Learning, ICML '07, pages 281-288, New York, NY, USA, 2007. ACM.
[GZKR08] Yair Goldberg, Alon Zakai, Dan Kushnir, and Ya’acov Ritov.
Manifold learning: The price of normalization.
Journal of Machine Learning Research, 9(Aug):1909-1939, 2008.
[MHM18] Leland McInnes, John Healy, and James Melville.
Umap: Uniform manifold approximation and projection for dimension arXiv preprint arXiv:1802.03426, 2018.

\section*{References V}
[MMVZ16] James McQueen, Marina Meila?Jacob VanderPlas, and Zhongyue Zhang. Megaman: Scalable manifold learning in python.
Journal of Machine Learning Research, 17(148):1-5, 2016.
[PM13] Dominique Perraul-Joncas and Marina Meila.
Non-linear dimensionality reduction: Riemannian metric estimation and the problem of geometric discovery. arXiv:1305.7255 [stat], May 2013.
[RSOO] Sam T. Roweis and Lawrence K. Saul.
Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500):2323-2326, December 2000.
[THJ11] Daniel Ting, Ling Huang, and Michael Jordan. An Analysis of the Convergence of Graph Laplacians. arXiv:1101.5435 [stat], January 2011.
[TJ18] Daniel Ting and Michael I. Jordan.
On Nonlinear Dimensionality Reduction, Linear Smoothing and Autoencoding. arXiv:1803.02432 [stat], March 2018.
[vLBB08] Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet.
Consistency of spectral clustering.
The Annals of Statistics, 36(2):555-586, April 2008.
[ZZO2] Zhenyue Zhang and Hongyuan Zha.
Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment.
SIAM Journal of Scientific Computing, 26:313-338, 2002.

BACKUP SLIDES

\section*{BACKUP SLIDES}

\section*{SOME INTUITIONS FOR IES PROBLEM}
- Two point clouds \(\mathbf{X}_{1} \stackrel{p}{\sim} \mathcal{M}_{1}, \mathbf{X}_{2} \stackrel{p}{\sim} \mathcal{M}_{2}\) sampled from two manifold w.r.t. same density \(\boldsymbol{p}\).
- The neighborhood graph \(\mathrm{G}(\mathrm{V}, \mathrm{E})\) should be built with similar \(\varepsilon\).
- Short edges behave like noises.


It is possible to remove the defect by constructing a anisotropic kernel, however
- An isotropic kernel is needed for the convergence of graph Laplacian L [THJ11].
- Difficult to obtain/design such kernel since we do not know \(\mathcal{M}\).

Another way to think of it is to consider the Rayleigh quotient of the min-eigenvalue problem. The \(\mathbf{k}\)-th minimum eigenvalue for graph Laplacian \(\mathbf{L}\) is
\[
\phi_{\mathrm{k}}=\underset{\varphi \perp \phi_{1} \cdots \phi_{\mathrm{k}-1} ;\|\varphi\|_{2}=1}{\operatorname{argmin}} \varphi^{\top} \mathbf{L} \varphi=\underset{\varphi \perp \phi_{1} \cdots \phi_{k-1} ;\|\varphi\|_{2}=1}{\operatorname{argmin}} \sum_{(i, j) \in \mathrm{E}}\left(\varphi_{i}-\varphi_{\mathrm{j}}\right)^{2}
\]

■ \(\|\varphi\|_{2}=1\), in some sense it "normalizes" the manifold to equal aspect ratio.
■ The density along the short edges are now sparser than the original density \(p\).
- The term \(\left(\varphi_{i}-\varphi_{j}\right)^{2}\) penalizes the function \(\varphi(\cdot)\) parametrized short edges.

\section*{BACKUP SLIDES}

How tо choose \(\zeta\)
- Define the leave-one-out regret of point \(i\)
\[
\begin{aligned}
\mathfrak{D}(S, i) & =\mathfrak{R}\left(S_{*}^{i} ;[n] \backslash\{i\}\right)-\mathfrak{R}(S ;[n] \backslash\{i\}) \\
\text { with } S_{*}^{i} & =\operatorname{argmax}_{S \subseteq[m] ;|S|=s ; 1 \in S} \mathfrak{R}(S ; i)
\end{aligned}
\]
\(\square \mathfrak{D}(S, i)\) is the gain in \(\mathfrak{R}\) if all the other points \([n] \backslash\{i\}\) choose the un-regularized optimal coordinates set in terms of point \(i\).

■ The optimal \(\zeta^{\prime}\) is then chosen by
\[
\zeta^{\prime}=\max _{\zeta \geqslant 0} \operatorname{Percentile}\left(\left\{\mathfrak{D}\left(S_{*}(\zeta), i\right)\right\}_{i=1}^{n}, \alpha\right) \leqslant 0
\]```


[^0]:    ${ }^{1}$ https://yuchaz.github.io/publication/2019-indep-coord-search

[^1]:    ${ }^{2}$ http://imgsrc.hubblesite.org/hu/db/images/hs-1999-25-a-full_tif.tif

[^2]:    - Sort $\phi_{\mathrm{k}}$ by $\lambda_{\mathrm{k}}$, the first two eigenvalues are $\lambda_{1,0}$ and $\lambda_{2,0}$.

