The decomposition of the higher-order homology embedding constructed from the k-Laplacian

FINDING "INDEPENDENT" LOOPS IN A MANIFOLD

Yu-Chia Chen (yuchaz@uw. edu)
Electrical \& Computer Engineering
University of WAshington
DECEMBER, 2021

NeurIPS 2021

■ Joint work with professor Marina Meilă

- Department of Statistics, University of Washington. mmp@uw.edu

■ The slides can be downloaded in
https://bit.ly/chen_meila_21_slides

Embedding of spectral clustering

- Structure of the embedding is known:
- Orthogonal cone structure (OCS) [Schiebinger et al., 2015]
- Clusters (red/blue) can be identified from the embedding

■ Spectral clustering $:=0$-homology embedding

What about the higher-order cases?
Empirical observation [Ebli and Spreemann, 2019]

- Embedding is a "union" of subspaces
\square Localize the "subcomponents" of a manifold

Main contribution

\qquad
\qquad

Embedding of spectral clustering

- Structure of the embedding is known:
- Orthogonal cone structure (OCS) [Schiebinger et al., 2015]
- Clusters (red/blue) can be identified from the embedding

■ Spectral clustering :=0-homology embedding

What about the higher-order cases?

■ Empirical observation [Ebli and Spreemann, 2019]

- Embedding is a "union" of subspaces
$1^{\text {st }}$ coordinal

$2^{\text {nd }}$ coordinate

$3^{r d}$ coordinate
$4^{\text {th }}$

■ Localize the "subcomponents" of a manifold

Main contribution

- A theoretical analysis of the above observation
- Using the concepts of connected sum and matrix perturbation theory

Embedding of spectral clustering

- Structure of the embedding is known:
- Orthogonal cone structure (OCS) [Schiebinger et al., 2015]
- Clusters (red/blue) can be identified from the embedding

■ Spectral clustering :=0-homology embedding

What about the higher-order cases?
■ Empirical observation [Ebli and Spreemann, 2019]

- Embedding is a "union" of subspaces
$1^{\text {st }}$ coordinate
$2^{\text {nd }}$
$2^{\text {coordinate }}$

$3^{r d}$ coordinate
$4^{\text {th }}$

■ Localize the "subcomponents" of a manifold

Main contribution

■ A theoretical analysis of the above observation

- Using the concepts of connected sum and matrix perturbation theory
- Data-driven decomposition algorithm + identifying loops (side product)

INTRODUCTION

(Finite samples from \mathcal{M})

Discrete	Continuous		
Simplicial complex	SC_{ℓ}	Manifold	\mathcal{M}
k-cochain	$\boldsymbol{\omega}_{\mathrm{k}}$	k-form	ζ_{k}
Boundary matrix	\mathbf{B}_{k}	Codifferential operator	δ_{k}
Coboundary matrix	\mathbf{B}_{k}^{\top}	Exterior derivative	$\mathrm{d}_{\mathrm{k}-1}$
Discrete k-Laplacian	\mathcal{L}_{k}	Laplace-de Rham operator	Δ_{k}
k-homology space	$\mathcal{H}_{\mathrm{k}} \subseteq \mathbb{R}^{n_{k}}$	k-homology group	$\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$

- Simplicial complex
$\rightarrow \mathrm{SC}_{\ell}=\left(\Sigma_{0}, \Sigma_{1}, \cdots, \Sigma_{\ell}\right)=\left(\mathrm{V}, \mathrm{E}, \mathrm{T}, \cdots, \Sigma_{\ell}\right)$
- $n_{k}:=\left|\Sigma_{k}\right|$

■ Clique complex of G

- fill all triangles, tetrahedrons, ..., (all k-cliques) in G

Discrete	Continuous		
Simplicial complex	SC_{ℓ}	Manifold	\mathcal{M}
k-cochain	$\boldsymbol{\omega}_{\mathrm{k}}$	k-form	ζ_{k}
Boundary matrix	\mathbf{B}_{k}	Codifferential operator	δ_{k}
Coboundary matrix	\mathbf{B}_{k}^{\top}	Exterior derivative	$\mathrm{d}_{\mathrm{k}-1}$
Discrete k-Laplacian	\mathcal{L}_{k}	Laplace-de Rham operator	Δ_{k}
k-homology space	$\mathcal{H}_{\mathrm{k}} \subseteq \mathbb{R}^{n_{k}}$	k-homology group	$\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$

SYMMETRIZED k-LAPLACIANS [Horak and Jost, 2013]

$$
\mathcal{L}_{k}=\underbrace{\boldsymbol{A}_{k}^{\top} \boldsymbol{A}_{k}}_{\mathcal{L}_{k}^{\text {down }}}+\underbrace{\boldsymbol{A}_{k+1} \boldsymbol{A}_{k+1}^{\top}}_{\mathcal{L}_{k}^{\text {up }}} .
$$

- $\boldsymbol{A}_{\ell}:=\mathbf{W}_{\ell-1}^{-1 / 2} \mathbf{B}_{\ell} \mathbf{W}_{\ell}^{1 / 2}$
- Normalized boundary matrix

■ $\mathcal{L}_{0}=\boldsymbol{A}_{1} \boldsymbol{A}_{1}^{\top}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{K} \mathbf{D}^{-1 / 2}$

- Symmetrized graph Laplacian
$\square \mathcal{L}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}_{\mathrm{k}} \times \mathrm{n}_{\mathrm{k}}}$

Discrete k-Hodge Laplacian and manifold geometry
(Finite samples from \mathcal{M})
(Want to approximate)

Discrete	Continuous		
Simplicial complex	SC_{ℓ}	Manifold	\mathcal{M}^{\prime}
k-cochain	$\boldsymbol{\omega}_{\mathrm{k}}$	k-form	ζ_{k}
Boundary matrix	\mathbf{B}_{k}	Codifferential operator	δ_{k}
Coboundary matrix	\mathbf{B}_{k}^{\top}	Exterior derivative	d_{k-1}
Discrete k -Laplacian	\mathcal{L}_{k}	Laplace-de Rham operator	Δ_{k}
k-homology space	$\mathcal{H}_{\mathrm{k}} \subseteq \mathbb{R}^{\mathfrak{n}_{\mathrm{k}}}$	k-homology group	$\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$

■ k-homology space: $\mathcal{H}_{\mathrm{k}}:=\operatorname{ker}\left(\mathcal{L}_{\mathrm{k}}\right)$
[Lim, 2020, Warner, 2013]
■ $\mathrm{k}^{\text {th }}$ Betti number $\beta_{\mathrm{k}}:=\operatorname{dim}\left(\mathcal{H}_{\mathrm{k}}\right)$
■ k-homology embedding $\mathbf{Y} \in \mathbb{R}^{n_{k} \times \beta_{\mathrm{k}}}$ is the basis of \mathcal{H}_{k}
■ Can estimate a basis of vector fields from \mathbf{Y} for $k=1$ [Chen et al., 2021]

CONNECTED SUM AND MANIFOLD (PRIME) DECOMPOSITION

The connected sum [Lee, 2013] $\mathcal{N}=\mathcal{N}_{1} \sharp \mathcal{N}_{2}$:

1. removing two d-dimensional "disks" from \mathcal{M}_{1} and \mathcal{M}_{2} (shaded area)
2. gluing together two manifolds at the boundaries

Existence of prime decomposition:
that $\mathcal{M}_{\mathfrak{i}}$ is a prime manifold
n $\mathrm{d}=2$: classification theorem of surfaces [Armstrong, 2013]
$\square \mathrm{d}=3$: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem [Milnor, 1962]
\qquad

CONNECTED SUM AND MANIFOLD (PRIME) DECOMPOSITION

The connected sum [Lee, 2013] $\mathcal{M}=\mathcal{M}_{1} \sharp \mathcal{M}_{2}$:

1. removing two d -dimensional "disks" from \mathcal{M}_{1} and \mathcal{M}_{2} (shaded area)
2. gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \not \mathcal{M}_{\kappa}$ into \mathcal{N}_{i} 's so that \mathcal{M}_{i} is a prime manifold

- $\mathrm{d}=2$ 2: classification theorem of surfaces [Armstrong, 2013]
- $\mathrm{d}=3$: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem [Milnor, 1962]
- $\mathrm{d} \geqslant 5$: [Bokor et al., 2020] proved the existence of factorization (but they might not be unique)

PROBLEM FORMULATION

THEORETIC AND ALGORITHMIC AIM

Theoretic aim

■ Study the geometric properties of \mathbf{Y}

- Recovering the homology basis of each prime manifold \mathcal{M}_{i}
- Recover $\hat{\boldsymbol{Y}}$ (localized, support on each $\mathcal{M}_{\mathfrak{i}}$) from \mathbf{Y} (coupled, rotation of $\hat{\mathbf{Y}}$)

■ Provide an analogous theorem to the OCS
[Meilă and Shi, 2001, Ng et al., 2002, Schiebinger et al., 2015] in
 spectral clustering $\left(\mathcal{H}_{0}\right)$

Algorithmic aim

- The null space basis of \mathcal{L}_{k} is only
identifiable up to a unitary matrix
\qquad

THEORETIC AND ALGORITHMIC AIM

Theoretic aim
■ Study the geometric properties of \mathbf{Y}

- Recovering the homology basis of each prime manifold \mathcal{M}_{i}
- Recover $\hat{\boldsymbol{Y}}$ (localized, support on each \mathcal{M}_{i}) from \mathbf{Y} (coupled, rotation of $\hat{\mathbf{Y}}$)

■ Provide an analogous theorem to the OCS
[Meilă and Shi, 2001, Ng et al., 2002, Schiebinger et al., 2015] in
 spectral clustering $\left(\mathcal{H}_{0}\right)$

Algorithmic aim

- The null space basis of \mathcal{L}_{k} is only identifiable up to a unitary matrix
- \mathbf{Y} is less interpretable than \mathbf{Z} !!

■ Proposed a data-driven approach to obtain \mathbf{Z} from \mathbf{Y}

- Approximate $\hat{\mathbf{Y}}$ with \mathbf{Z}

CONNECTED SUM AS A MATRIX PERTURBATION

Assumptions

1. Points are sampled from a decomposable manifold

- k-fold connected sum: $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \not \mathcal{N}_{\mathrm{K}}$
- $\mathcal{H}_{\mathrm{k}}(\mathrm{SC})$ (discrete) and $\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_{i}
- Works for any consistent method to build \mathcal{L}_{k}

■ We use our prior work [Chen et al., 2021] for \mathcal{L}_{1}

No k-homology class is created/destroyed during the connected sum - If $\operatorname{dim}(\mathcal{M})>k$, then $\mathcal{H}_{k}\left(\mathcal{M}_{1} \sharp \mathcal{M}_{2}\right) \cong \mathcal{H}_{k}\left(\mathcal{M}_{1}\right) \oplus \mathcal{H}_{k}\left(\mathcal{M}_{2}\right)$ [Lee, 2013] - [Technicall The eigenaan of \mathcal{L}_{i} is the min of each $\hat{\mathcal{L}}$. Sparsely connected manifold - Not too manv triangles are created/destroyed during connected sum (for k = 1) - Empirically, the perturbation is small even when \mathcal{M} is not sparsely connected - [Technical] Perturbations of ℓ-simplex set Σ_{ℓ} are small (ϵ_{ℓ} and ϵ_{ℓ}^{\prime} are small)

Assumptions

1. Points are sampled from a decomposable manifold

- k-fold connected sum: $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{\kappa}$
- $\mathcal{H}_{k}(\mathrm{SC})$ (discrete) and $\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_{i}

■ Works for any consistent method to build \mathcal{L}_{k}
■ We use our prior work [Chen et al., 2021] for \mathcal{L}_{1}

2. No k-homology class is created/destroyed during the connected sum

- If $\operatorname{dim}(\mathcal{M})>\mathrm{k}$, then $\mathcal{H}_{\mathrm{k}}\left(\mathcal{M}_{1} \sharp \mathcal{N}_{2}\right) \cong \mathcal{H}_{\mathrm{k}}\left(\mathcal{N}_{1}\right) \oplus \mathcal{H}_{\mathrm{k}}\left(\mathcal{M}_{2}\right)$ [Lee, 2013]
- [Technical] The eigengap of \mathcal{L}_{k} is the min of each $\hat{\mathcal{L}}_{k}^{(i i)}: \delta=\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}$

Assumptions

1. Points are sampled from a decomposable manifold

- k-fold connected sum: $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{\kappa}$
- $\mathcal{H}_{k}(\mathrm{SC})$ (discrete) and $\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_{i}
- Works for any consistent method to build \mathcal{L}_{k}

■ We use our prior work [Chen et al., 2021] for \mathcal{L}_{1}

2. No k-homology class is created/destroyed during the connected sum

- If $\operatorname{dim}(\mathcal{M})>k$, then $\mathcal{H}_{k}\left(\mathcal{N}_{1} \sharp \mathcal{N}_{2}\right) \cong \mathcal{H}_{k}\left(\mathcal{N}_{1}\right) \oplus \mathcal{H}_{k}\left(\mathcal{N}_{2}\right)$ [Lee, 2013]
- [Technical] The eigengap of \mathcal{L}_{k} is the min of each $\hat{\mathcal{L}}_{k}^{(i i)}: \delta=\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}$

3. Sparsely connected manifold

- Not too many triangles are created/destroyed during connected sum (for $\mathrm{k}=1$)
- Empirically, the perturbation is small even when \mathcal{M} is not sparsely connected
- [Technical] Perturbations of ℓ-simplex set Σ_{ℓ} are small (ϵ_{ℓ} and ϵ_{ℓ}^{\prime} are small) for $\ell=k, k-1$

SUBSPACE PERTURBATION

THEOREM 1

Under Assumptions 1-3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathrm{Y}_{\mathfrak{N}_{k},:}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:} \mathrm{O}\right\|_{\mathrm{F}}^{2} \leqslant \frac{8 \beta_{\mathrm{k}}\left[\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2}+\| \text { DiffL }_{k}^{\text {up }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}}, \tag{1}
\end{equation*}
$$

with

$$
\begin{gathered}
\left\|\operatorname{DiffL}_{\mathrm{k}}^{\text {down }}\right\|^{2} \leqslant\left[2 \sqrt{\epsilon_{\mathrm{k}}^{\prime}}+\epsilon_{\mathrm{k}}^{\prime}+\left(1+\sqrt{\epsilon_{\mathrm{k}}^{\prime}}\right)^{2} \sqrt{\epsilon_{\mathrm{k}-1}^{\prime}}+4 \sqrt{\epsilon_{\mathrm{k}-1}}\right]^{2}(\mathrm{k}+1)^{2} ; \text { and } \\
\left\|\operatorname{DiffL}_{\mathrm{k}}^{\text {up }}\right\|^{2} \leqslant\left[2 \sqrt{\epsilon_{\mathrm{k}}^{\prime}}+\epsilon_{\mathrm{k}}^{\prime}+2 \epsilon_{\mathrm{k}}+4 \sqrt{\epsilon_{\mathrm{k}}}\right]^{2}(\mathrm{k}+2)^{2}
\end{gathered}
$$

SUBSPACE PERTURBATION

THEOREM 1

Under Assumptions 1-3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathbf{Y}_{\mathfrak{N}_{k}::}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:} \mathbf{O}\right\|_{F}^{2} \leqslant \frac{8 \beta_{k}\left[\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2}+\| \text { DiffL }_{k}^{\text {up }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}}, \tag{1}
\end{equation*}
$$

with

$$
\begin{gathered}
\| \text { DiffL }_{\mathrm{k}}^{\text {down }} \|^{2} \leqslant\left[2 \sqrt{\epsilon_{\mathrm{k}}^{\prime}}+\epsilon_{\mathrm{k}}^{\prime}+\left(1+\sqrt{\epsilon_{\mathrm{k}}^{\prime}}\right)^{2} \sqrt{\epsilon_{\mathrm{k}-1}^{\prime}}+4 \sqrt{\epsilon_{\mathrm{k}-1}}\right]^{2}(\mathrm{k}+1)^{2} ; \text { and } \\
\left\|\operatorname{DiffL}_{\mathrm{k}}^{\text {up }}\right\|^{2} \leqslant\left[2 \sqrt{\epsilon_{\mathrm{k}}^{\prime}}+\epsilon_{\mathrm{k}}^{\prime}+2 \epsilon_{\mathrm{k}}+4 \sqrt{\epsilon_{\mathrm{k}}}\right]^{2}(\mathrm{k}+2)^{2} .
\end{gathered}
$$

■ Assu. 2: no topology is destroyed/created

SUBSPACE PERTURBATION

THEOREM 1

Under Assumptions 1-3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathbf{Y}_{\mathfrak{N}_{k},:}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:} \mathbf{O}\right\|_{\mathrm{F}}^{2} \leqslant \frac{8 \beta_{\mathrm{k}}\left[\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2}+\| \text { DiffL }_{k}^{\text {up }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}}, \tag{1}
\end{equation*}
$$

with

$$
\begin{gathered}
\| \text { DiffL }_{\mathrm{k}}^{\text {down }} \|^{2} \leqslant\left[2 \sqrt{\epsilon_{\mathrm{k}}^{\prime}}+\epsilon_{\mathrm{k}}^{\prime}+\left(1+\sqrt{\epsilon_{\mathrm{k}}^{\prime}}\right)^{2} \sqrt{\epsilon_{\mathrm{k}-1}^{\prime}}+4 \sqrt{\epsilon_{\mathrm{k}-1}}\right]^{2}(\mathrm{k}+1)^{2} ; \text { and } \\
\| \text { DiffL }_{\mathrm{k}}^{\text {up }} \|^{2} \leqslant\left[2 \sqrt{\epsilon_{\mathrm{k}}^{\prime}}+\epsilon_{\mathrm{k}}^{\prime}+2 \epsilon_{\mathrm{k}}+4 \sqrt{\epsilon_{\mathrm{k}}}\right]^{2}(\mathrm{k}+2)^{2} .
\end{gathered}
$$

■ Assu. 2: no topology is destroyed/created
■ Assu. 3: sparsely connected

SUBSPACE PERTURBATION

THEOREM 1

Under Assumptions 1-3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathbf{Y}_{\mathfrak{N}_{k},:}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:} \mathbf{O}\right\|_{\mathrm{F}}^{2} \leqslant \frac{8 \beta_{\mathrm{k}}\left[\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2}+\| \text { DiffL }_{k}^{\text {Lp }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}}, \tag{1}
\end{equation*}
$$

with

$$
\begin{gathered}
\| \text { DiffL }_{k}^{\text {down }} \|^{2} \leqslant\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+\left(1+\sqrt{\epsilon_{k}^{\prime}}\right)^{2} \sqrt{\epsilon_{k-1}^{\prime}}+4 \sqrt{\epsilon_{k-1}}\right]^{2}(\mathrm{k}+1)^{2} ; \text { and } \\
\| \text { DiffL }_{k}^{\text {up }} \|^{2} \leqslant\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+2 \epsilon_{\mathrm{k}}+4 \sqrt{\epsilon_{k}}\right]^{2}(\mathrm{k}+2)^{2} .
\end{gathered}
$$

■ Assu. 2: no topology is destroyed/created

- Assu. 3: sparsely connected

■ $\mathfrak{N}_{\mathrm{k}}$: bound only simplexes that are not altered during connected sum

DECOMPOSITION ALGORITHM IN THE HARMONIC EMBEDDING Y

Input: Y (coupled)
Output: Z (localized, approx. of $\hat{\mathbf{Y}}$)

Estimate \mathbf{O} with Independent Component Analysis (ICA)

APPLICATIONS
\mathbf{W}

APPLICATIONS

■ Classifying any 2-manifold

- $S^{1} \sharp S^{1} \neq \mathbb{T}^{2}$ even though $\beta_{1}=2$ for both
- Proposition 4: 1-homology embedding of \mathbb{T}^{m} is an m -dimensional ellipsoid
- Visualize the basis of harmonic vector fields
- Higher-order simplex clustering
[Ebli and Spreemann, 2019]

Two disjoint holes: $\mathrm{S}^{1} \sharp \mathrm{~S}^{1}$

Torus: \mathbb{T}^{2}

Shortest homologous loop detection

- Proposition 3

ApPLICATIONS

■ Classifying any 2-manifold

- $S^{1} \not \sharp S^{1} \neq \mathbb{T}^{2}$ even though $\beta_{1}=2$ for both
- Proposition 4: 1-homology embedding of \mathbb{T}^{m} is an m-dimensional ellipsoid

■ Visualize the basis of harmonic vector fields

Higher-order simplex clustering
[Ebli and Spreemann, 2019]

$2^{\text {nd }}$ coordinate $3^{\text {rd }}$ coordinate $4^{\text {th }}$ coordinate

- Shortest homologous loop detection

- Proposition 3:

ApPLICATIONS

- Classifying any 2-manifold
- $S^{1} \not \sharp S^{1} \neq \mathbb{T}^{2}$ even though $\beta_{1}=2$ for both
- Proposition 4: 1-homology embedding of \mathbb{T}^{m} is an m-dimensional ellipsoid

■ Visualize the basis of harmonic vector fields

- Higher-order simplex clustering [Ebli and Spreemann, 2019]
- Theorem 1 supports their use of subspace clustering algorithm
- Shortest homologous loop detection
- Proposition 3

APPLICATIONS

■ Classifying any 2-manifold

- $S^{1} \sharp S^{1} \neq \mathbb{T}^{2}$ even though $\beta_{1}=2$ for both
- Proposition 4: 1-homology embedding of \mathbb{T}^{m} is an m-dimensional ellipsoid

■ Visualize the basis of harmonic vector fields

- Higher-order simplex clustering [Ebli and Spreemann, 2019]
- Theorem 1 supports their use of subspace
 clustering algorithm

■ Shortest homologous loop detection

- Proposition 3: a non-trivial loop corresponding to the $i^{\text {th }}$ column of the homology embedding can be obtained using Dijkstra algorithm
- Using the factorized homology embedding Z ensures that each loop corresponds to a single homology class

EXPERIMENTS

Two disjoint holes $\mathbb{S}^{1} \sharp S^{1}$:
■ Inset: estimated vector field from the corresponding basis with [Chen et al., 2021]
■ Red and yellow (\boldsymbol{z}_{1} and \boldsymbol{z}_{2}) are more localized than green and blue

Two disjoint holes $\mathbb{S}^{1} \sharp S^{1}$:
■ Inset: estimated vector field from the corresponding basis with [Chen et al., 2021]
■ Red and yellow (\boldsymbol{z}_{1} and \boldsymbol{z}_{2}) are more localized than green and blue

Extracted loops from \mathbf{Z}
Homology embedding \mathbf{z}

m-tori \mathbb{T}^{m} :

■ Homology embedding of \mathbb{T}^{2} is different from that of $\mathbb{S}^{1} \sharp \mathrm{~S}^{1}$

- Classify them by Proposition 4

■ \mathbf{Z} of \mathbb{T}^{3} is an ellipsoid

SYNTHETIC MANIFOLDS: COMPLEX SURFACES

Genus-2 surface:

Extracted loops

Concatenation of 4 tori:

SYNTHETIC MANIFOLDS: COMPLEX SURFACES

Genus-2 surface:

Extracted loops

Concatenation of 4 tori:

Extracted loops from Y

Extracted loops from Z

Real datasets

Real datasets

Fig. (j): our framework can be extended to images with cubical complex

Discussion

Geometry/shape for the \mathcal{H}_{0} embedding.
■ Pivotal for spectral clustering and inference algorithms for the stochastic block models

- Using matrix perturbation theory [Ng et al., 2002, Wan and Meila, 2015, von Luxburg, 2007]
- Under the assumption of a mixture model [Schiebinger et al., 2015]

Higher-order homology embeddings ($k>0$).
■ Reported empirically that the homology embedding is approximately distributed on the union (directed sum) of subspaces [Ebli and Spreemann, 2019]

- Subspace clustering algorithms [Kailing et al., 2004] were applied to cluster edges/triangles

CONTRIBUTIONS

■ Generalize the study of embedding of the spectral clustering to higher-order homology embedding of \mathcal{H}_{k}

■ Our analysis is made possible by expressing the κ-fold connected sum as a matrix perturbation

- Theoretical: the k-homology embedding can be approximately factorized into parts, with each corresponding to a prime manifold given a small perturbation
- Algorithmic: identify each decoupled subspace using ICA
- Easy to extend to cubical complexes in image analysis

■ Applications in shortest homologous loop detection, classifying any 2-dimensional manifold, and visualizing harmonic vector fields.
■ Support our theoretical claims by comprehensive experiments on synthetic and real datasets

1. Extend our framework to a multiple spatial resolution approach

- The persistent spectral methods [Wang et al., 2020, Meng and Xia, 2021]

2. Explore the connection between the proposed framework and the disentangled representations [Zhou et al., 2020]
3. Investigate the success/failure conditions of the proposed spectral homologous loop detection algorithm
[^0]
THANK YOU VERY MUCH!

References

References I

[Armstrong, 2013] Armstrong, M. A. (2013).

Basic Topology.

Springer Science \& Business Media.
[Berry and Sauer, 2019] Berry, T. and Sauer, T. (2019).
Consistent manifold representation for topological data analysis.
Foundations of Data Science, 1(1):1.
[Bokor et al., 2020] Bokor, I., Crowley, D., Friedl, S., Hebestreit, F., Kasprowski, D., Land, M., and Nicholson, J. (2020).
Connected sum decompositions of high-dimensional manifolds. arXiv:1909.02628 [math].
[Chen et al., 2021] Chen, Y.-C., Meilă, M., and Kevrekidis, I. G. (2021).
Helmholtzian Eigenmap: Topological feature discovery \& edge flow learning from point cloud data.
arXiv:2103.07626 [stat.ML].

References II
[Ebli and Spreemann, 2019] Ebli, S. and Spreemann, G. (2019).
A Notion of Harmonic Clustering in Simplicial Complexes.
2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pages 1083-1090.
[Eckmann, 1944] Eckmann, B. (1944).
Harmonische Funktionen und Randwertaufgaben in einem Komplex. Commentarii mathematici Helvetici, 17:240-255.
[Horak and Jost, 2013] Horak, D. and Jost, J. (2013).
Spectra of combinatorial Laplace operators on simplicial complexes.
Advances in Mathematics, 244:303-336.
[Kailing et al., 2004] Kailing, K., Kriegel, H.-P., and Kröger, P. (2004).
Density-connected subspace clustering for high-dimensional data.
In Proceedings of the 2004 SIAM International Conference on Data Mining, pages 246-256. SIAM.

References III

[Lee, 2013] Lee, J. M. (2013).
Introduction to Smooth Manifolds.
In Introduction to Smooth Manifolds, pages 1-31. Springer.
[Lim, 2020] Lim, L.-H. (2020).
Hodge laplacians on graphs.
Siam Review, 62(3):685-715.
[Meilă and Shi, 2001] Meilă, M. and Shi, J. (2001).
A random walks view of spectral segmentation.
In International Workshop on Artificial Intelligence and Statistics, pages 203-208. PMLR.
[Meng and Xia, 2021] Meng, Z. and Xia, K. (2021).
Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction.
Science Advances, 7(19):eabc5329.
[Milnor, 1962] Milnor, J. (1962).
A unique decomposition theorem for 3-manifolds.
American Journal of Mathematics, 84(1):1-7.
[Ng et al., 2002] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002).
On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 2:849-856.
[Schaub et al., 2020] Schaub, M. T., Benson, A. R., Horn, P., Lippner, G., and Jadbabaie, A. (2020).

Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. SIAM Review, 62(2):353-391.
[Schiebinger et al., 2015] Schiebinger, G., Wainwright, M. J., and Yu, B. (2015).
The geometry of kernelized spectral clustering.
Annals of Statistics, 43(2):819-846.

References V

[von Luxburg, 2007] von Luxburg, U. (2007).
A Tutorial on Spectral Clustering.
arXiv:0711.0189 [cs].
[Wan and Meila, 2015] Wan, Y. and Meila, M. (2015).
A class of network models recoverable by spectral clustering. In NIPS, pages 3285-3293.
[Wang et al., 2020] Wang, R., Nguyen, D. D., and Wei, G.-W. (2020).
Persistent spectral graph.
International journal for numerical methods in biomedical engineering, 36(9):e3376.
[Warner, 2013] Warner, F. W. (2013).
Foundations of Differentiable Manifolds and Lie Groups, volume 94.
Springer Science \& Business Media.
[Yu et al., 2015] Yu, Y., Wang, T., and Samworth, R. J. (2015).
A useful variant of the Davis-Kahan theorem for statisticians.
Biometrika, 102(2):315-323.
[Zhou et al., 2020] Zhou, S., Zelikman, E., Lu, F., Ng, A. Y., Carlsson, G., and Ermon, S. (2020). Evaluating the disentanglement of deep generative models through manifold topology. arXiv preprint arXiv:2006.03680.

BACKUP SLIDES

BACKUP SLIDES

SIMPLICIAL COMPLEXES, COCHAINS, AND BOUNDARY MATRICES

■ Observed data $\boldsymbol{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{D}}$ for $\mathfrak{i}=1, \cdots, \mathfrak{n}$ sampled (i.i.d.) from a d-manifold

- Called a point cloud
- Local low dimensional geometry is encoded in local distances, triangles, tetrahedra, etc.
- Represented by a neighborhood graph

δ-RADIUS NEIGHBORHOOD GRAPH

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with

- the vertex set V on every $\boldsymbol{x}_{\mathrm{i}}$'s (index set)
- the edge set E being

$$
E=\left\{(i, j) \in V^{2}:\left\|x_{i}-x_{j}\right\|_{2} \leqslant \delta\right\}
$$

SIMPLICIAL AND CUBICAL COMPLEXES - I
SIMPLICIAL COMPLEX SC
An SC is a set of simplices so that:

1. Every face of a simplex from SC is also in SC
2. $\sigma_{1} \cap \sigma_{2}$ for any $\sigma_{1}, \sigma_{2} \in \mathrm{SC}$ is a face of both σ_{1} and σ_{2}

Remark.
\mathbf{w}

SIMPLICIAL COMPLEX SC

An SC is a set of simplices so that:

1. Every face of a simplex from SC is also in SC
2. $\sigma_{1} \cap \sigma_{2}$ for any $\sigma_{1}, \sigma_{2} \in \mathrm{SC}$ is a face of both σ_{1} and σ_{2}
$\square \Sigma_{\ell}$ is the collection of ℓ-simplices σ_{ℓ}, then

$$
\mathrm{SC}_{\mathrm{k}}=\left(\Sigma_{\ell}\right)_{\ell=0}^{\mathrm{k}}=\left(\Sigma_{0}, \Sigma_{1}, \cdots, \Sigma_{\mathrm{k}}\right)
$$

■ The cardinality of Σ_{ℓ} is $\mathfrak{n}_{\ell}=\left|\Sigma_{\ell}\right|$

Remark.

1. A graph is: $\mathrm{G}=\mathrm{SC}_{1}=(\mathrm{V}, \mathrm{E})=\left(\Sigma_{0}, \Sigma_{1}\right)$
2. We mostly focus on $\mathrm{SC}_{2}=(\mathrm{V}, \mathrm{E}, \mathrm{T})=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$

Not an SC

CLIQUE COMPLEX

A clique complex of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a simplicial complex $\mathrm{SC}_{\mathrm{k}}=\left(\Sigma_{0}, \cdots, \Sigma_{\mathrm{k}}\right)$, with the ℓ-th simplex set Σ_{ℓ} being the set of all ℓ-cliques

NOT a clique complex of G

A clique complex of G

Remark. The clique complex built from δ-radius graph $:=$ Vietoris-Rips (VR) complex
CUBICAL COMPLEX (INFORMAL)
A cubical complex $C B_{k}=\left(K_{0}, \cdots, K_{k}\right)$ is a collection of sets K_{ℓ} of ℓ-cubes

SIMPLICIAL AND CUBICAL COMPLEXES - II

CLIQUE COMPLEX

A clique complex of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a simplicial complex $\mathrm{SC}_{\mathrm{k}}=\left(\Sigma_{0}, \cdots, \Sigma_{\mathrm{k}}\right)$, with the ℓ-th simplex set Σ_{ℓ} being the set of all ℓ-cliques

NOT a clique complex of G

A clique complex of G

Remark. The clique complex built from δ-radius graph :=Vietoris-Rips (VR) complex

CUBICAL COMPLEX (INFORMAL)

A cubical complex $\mathrm{CB}_{\mathrm{k}}=\left(\mathrm{K}_{0}, \cdots, \mathrm{~K}_{\mathrm{k}}\right)$ is a collection of sets K_{ℓ} of ℓ-cubes
Remark. $C B_{k}$ is widely used for image datasets

AN SC 2 dEFINES (co-)BOUNDARY MATRICES B_{1} AND B_{2}

k -COCHAIN

An edge flow (1-cochain) $\boldsymbol{\omega}_{1}$ is a flow on edges (1-simplex) of SC/CB

- $\omega_{1}=\sum_{i} \omega_{1, i} e_{i}$, where $e_{i} \in E$
$■$ Can further denote by $\boldsymbol{\omega}_{1}=\left(\omega_{1,1}, \cdots, \omega_{1, n_{1}}\right)^{\top} \in \mathbb{R}^{\mathfrak{n}_{1}}$
- Set of \pm weights on edges
- Space of $\boldsymbol{\omega}\left(:=\mathfrak{C}_{1}\right)$ is isomorphic to $\mathbb{R}^{\mathfrak{n}_{1}}$

Example. $\omega_{1}=7 \cdot[1,2]+2 \cdot[3,5]+(-1) \cdot[1,4]$

$\omega_{k}:=$ HIGHER-ORDER GENERALIZATION OF ω_{1}

k -COCHAIN

An edge flow (1 -cochain) $\boldsymbol{\omega}_{1}$ is a flow on edges (1-simplex) of SC/CB

- $\omega_{1}=\sum_{i} \omega_{1, i} e_{i}$, where $e_{i} \in E$
- Can further denote by $\boldsymbol{\omega}_{1}=\left(\omega_{1,1}, \cdots, \omega_{1, n_{1}}\right)^{\top} \in \mathbb{R}^{\mathfrak{n}_{1}}$
- Set of \pm weights on edges
- Space of $\boldsymbol{\omega}\left(:=\mathcal{C}_{1}\right)$ is isomorphic to $\mathbb{R}^{\mathfrak{n}_{1}}$

Example. $\boldsymbol{\omega}_{1}=7 \cdot[1,2]+2 \cdot[3,5]+(-1) \cdot[1,4]$

$$
\omega_{1}=\left[\begin{array}{cccccc}
7 & 0 & -1 & 0 & 0 & 2 \\
{[1,2]} & {[1,3]} & {[1,4]} & {[2,3]} & {[3,4]} & {[3,5]}
\end{array}\right] \in \mathbb{R}^{6}
$$

$\omega_{\mathrm{k}}:=$ HIGHER-ORDER GENERALIZATION OF ω_{1}

k -COCHAIN

An edge flow (1-cochain) $\boldsymbol{\omega}_{1}$ is a flow on edges (1-simplex) of SC/CB

- $\omega_{1}=\sum_{i} \omega_{1, i} e_{i}$, where $e_{i} \in E$
$■$ Can further denote by $\boldsymbol{\omega}_{1}=\left(\omega_{1,1}, \cdots, \omega_{1, \mathfrak{n}_{1}}\right)^{\top} \in \mathbb{R}^{n_{1}}$
- Set of \pm weights on edges

■ Space of $\boldsymbol{\omega}\left(:=\mathcal{C}_{1}\right)$ is isomorphic to $\mathbb{R}^{\mathfrak{n}_{1}}$
Example. $\boldsymbol{\omega}_{1}=7 \cdot[1,2]+2 \cdot[3,5]+(-1) \cdot[1,4]$

$$
\omega_{1}=\left[\begin{array}{cccccc}
7 & 0 & -1 & 0 & 0 & 2 \\
{[1,2]} & {[1,3]} & {[1,4]} & {[2,3]} & {[3,4]} & {[3,5]}
\end{array}\right] \in \mathbb{R}^{6}
$$

$\omega_{\mathrm{k}}:=$ HIGHER-ORDER GENERALIZATION OF ω_{1}
A k-cochain $\boldsymbol{\omega}_{\mathrm{k}}$ is a flow on k-simplex of SC/CB

BACKUP SLIDES

The discrete k-LAPLACIAN

k-LAPLACIANS

Unnormalized k-Laplacian [Eckmann, 1944]:

$$
\mathbf{L}_{k}=\underbrace{\mathbf{B}_{k}^{\top} \mathbf{B}_{k}}_{\mathbf{L}_{k}^{\text {down }}}+\underbrace{\mathbf{B}_{k+1} \mathbf{B}_{k+1}^{\top}}_{\mathbf{L}_{k}^{\text {up }}} ;
$$

Random-walk k-Laplacian [Horak and Jost, 2013]:

$$
\mathcal{L}_{\mathrm{k}}=\underbrace{\mathbf{B}_{\mathrm{k}}^{\top} \mathbf{W}_{\mathrm{k}-1}^{-1} \mathbf{B}_{\mathrm{k}} \mathbf{W}_{\mathrm{k}}}_{\mathcal{L}_{\mathrm{k}}^{\text {down }}}+\underbrace{\mathbf{W}_{1}^{-1} \mathbf{B}_{2} \mathbf{W}_{2} \mathbf{B}_{2}^{\top}}_{\mathcal{L}_{\mathrm{k}}^{\text {up }}} ;
$$

Symmetrized k-Laplacian [Schaub et al., 2020]:

$$
\mathcal{L}_{\mathrm{k}}^{s}=\underbrace{\boldsymbol{\mathcal { A }}_{\mathrm{k}}^{\top} \boldsymbol{A}_{\mathrm{k}}}_{\mathcal{L}_{\mathrm{k}}^{\text {s.down }}}+\underbrace{\boldsymbol{A}_{\mathrm{k}+1} \boldsymbol{A}_{\mathrm{k}+1}^{\top}}_{\mathcal{L}_{\mathrm{k}}^{\text {s.up }}}
$$

- $\boldsymbol{A}_{\ell}:=\mathbf{W}_{\ell-1}^{-1 / 2} \mathbf{B}_{\ell} \mathbf{W}_{\ell}^{1 / 2}$ (for $\ell=\mathrm{k}, \mathrm{k}+1$) is the normalized boundary matrix
$\square \mathcal{L}_{\mathrm{k}}^{\mathrm{s}}=\mathbf{W}_{\mathrm{k}}^{1 / 2} \mathcal{L}_{\mathrm{k}} \mathbf{W}_{\mathrm{k}}^{-1 / 2}$ has the same spectrum as \mathcal{L}_{k} [Schaub et al., 2020]

THE UP- AND DOWN-1-LAPLACIAN

- $\mathrm{L}_{0}=\mathrm{B}_{1} \mathrm{~B}_{1}^{\top}$ is the unnormalized graph Laplacian:

$$
\mathbf{L}_{0}=\mathbf{B}_{1} \mathbf{B}_{1}^{\top}=\left\{\begin{array}{ll}
\operatorname{deg}(\mathfrak{i}) & \text { if } \mathfrak{i}=\mathfrak{j} \\
-1 & \text { if } \mathfrak{i} \sim \mathfrak{j} \\
0 & \text { otherwise }
\end{array}=\mathbf{D}-\boldsymbol{A}\right.
$$

$\mathcal{L}_{0}=W_{0}^{-1} B_{1} W_{1} B_{1}^{1}$ is the random-walk graph Laplacian:

- $\mathrm{L}_{0}=\mathrm{B}_{1} \mathrm{~B}_{1}^{\top}$ is the unnormalized graph Laplacian:

$$
L_{0}=B_{1} \mathbf{B}_{1}^{\top}=\left\{\begin{array}{ll}
\operatorname{deg}(i) & \text { if } \mathfrak{i}=\mathfrak{j} \\
-1 & \text { if } \mathfrak{i} \sim \mathfrak{j} \\
0 & \text { otherwise }
\end{array}=\mathbf{D}-\mathbf{A}\right.
$$

By letting $\boldsymbol{W}_{0}=\operatorname{diag}\left(\left|\mathbf{B}_{1}\right| \mathbf{W}_{1} \mathbf{1}\right)=\operatorname{diag}\left(\left[\sum_{j} \boldsymbol{w}_{i j}\right]_{i=1}^{n}\right)=\mathbf{D} \ldots$

- $\mathcal{L}_{0}=W_{0}^{-1} \mathbf{B}_{1} W_{1} \mathbf{B}_{1}^{\top}$ is the random-walk graph Laplacian:

$$
\mathcal{L}_{0}=\mathbf{D}^{-1} \mathbf{B}_{1} \boldsymbol{W}_{1} \mathbf{B}_{1}^{\top}=\left\{\begin{array}{ll}
1 & \text { if } \mathfrak{i}=\mathfrak{j} \\
-\frac{1}{\operatorname{deg}(i)} & \text { if } \mathfrak{i} \neq \mathfrak{j} \\
0 & \text { otherwise }
\end{array}=\mathbf{I}-\mathbf{D}^{-1} \boldsymbol{A}\right.
$$

BACKUP SLIDES

Hodge Laplacian, differential geometry, And topology

HARMONIC VECTOR SPACE

The harmonic vector space $\mathcal{H}_{k} \subseteq \mathbb{R}^{n_{1}}$ is a subspace of the k -cochain defined as the null of \mathcal{L}_{k}

$$
\mathcal{H}_{\mathrm{k}}:=\left\{\boldsymbol{\omega} \in \mathbb{R}^{\mathfrak{n}_{\mathrm{k}}}: \mathcal{L}_{\mathrm{k}} \boldsymbol{\omega}=0\right\} .
$$

Remark. Similar definition works for \mathbf{L}_{k} or \mathcal{L}_{k}^{s}, as well as its continuous counterpart (using k-differential forms and Δ_{k})

- The k -th homology space $\mathrm{H}_{\mathrm{k}}:=\operatorname{ker}\left(\mathbf{B}_{\mathrm{k}}\right) / \operatorname{im}\left(\mathbf{B}_{\mathrm{k}+1}\right)$ - $\mathcal{H}_{1_{1}} \simeq H_{1}$. $[1 \mathrm{im} 2020$ W/arner 201.31 - The k-th Betti number $\beta_{k}:=\operatorname{dim}\left(\mathcal{F}_{k}\right)=\operatorname{dim}\left(\operatorname{ker}\left(\mathcal{L}_{k}\right)\right)$

Harmonic vector space

The harmonic vector space $\mathcal{H}_{k} \subseteq \mathbb{R}^{n_{1}}$ is a subspace of the k -cochain defined as the null of \mathcal{L}_{k}

$$
\mathcal{H}_{k}:=\left\{\boldsymbol{\omega} \in \mathbb{R}^{n_{k}}: \mathcal{L}_{k} \boldsymbol{\omega}=0\right\} .
$$

Remark. Similar definition works for \mathbf{L}_{k} or \mathcal{L}_{k}^{s}, as well as its continuous counterpart (using k-differential forms and Δ_{k})

■ The k -th homology space $\mathrm{H}_{\mathrm{k}}:=\operatorname{ker}\left(\mathbf{B}_{\mathrm{k}}\right) / \operatorname{im}\left(\mathbf{B}_{\mathrm{k}+1}\right)$
■ $\mathcal{H}_{\mathrm{k}} \cong \mathrm{H}_{\mathrm{k}}$ [Lim, 2020, Warner, 2013]
■ The k -th Betti number $\beta_{\mathrm{k}}:=\operatorname{dim}\left(\mathcal{H}_{\mathrm{k}}\right)=\operatorname{dim}\left(\operatorname{ker}\left(\mathcal{L}_{\mathrm{k}}\right)\right)$

(Finite samples from \mathcal{M})
(Want to approximate)

Discrete		Continuous	
Simplicial/Cubical complex	$\mathrm{SC}_{\ell}\left(\right.$ or $\left.\mathrm{CB}_{\ell}\right)$	Manifold	\mathcal{M}
k-cochain	$\boldsymbol{\omega}_{\mathrm{k}}$	k-form	ζ_{k}
Boundary matrix	\mathbf{B}_{k}	Codifferential operator	δ_{k}
Coboundary matrix	$\mathbf{B}_{\mathrm{k}}^{\top}$	Exterior derivative	$\mathrm{d}_{\mathrm{k}-1}$
Discrete k-Laplacian	\mathcal{L}_{k}	Laplace-de Rham operator	Δ_{k}
k-homology space	$\mathcal{H}_{\mathrm{k}} \subseteq \mathbb{R}^{n_{k}}$	k-homology group	$\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$

BACKUP SLIDES

BOUNDARY MATRICES

A boundary matrix $\mathbf{B}_{k} \in \mathbb{R}^{\boldsymbol{n}_{k} \times n_{k-1}}$ maps a k-simplex to its ($k-1$)-th faces

- With $[x, y, z] \in T, \mathbf{B}_{1}$ and \mathbf{B}_{2} are defined as:

$$
\left[\mathbf{B}_{1}\right]_{\mathrm{a}, x y}=\left\{\begin{array}{ll}
1 & \text { if } a=x \\
-1 & \text { if } a=y \\
0 & \text { otherwise }
\end{array} \quad ; \quad\left[\mathbf{B}_{2}\right]_{a b, x y z}= \begin{cases}1 & \text { if }[a, b] \in\{[x, y],[y, z]\} \\
-1 & \text { if }[a, b]=[x, z] \\
0 & \text { otherwise }\end{cases}\right.
$$

- Definition for \mathbf{B}_{k} with $\mathrm{k} \geqslant 2$ is in Appendix.

A boundary matrix $\mathbf{B}_{k} \in \mathbb{R}^{\boldsymbol{n}_{k} \times n_{k-1}}$ maps a k-simplex to its ($k-1$)-th faces

- With $[x, y, z] \in T, \mathbf{B}_{1}$ and \mathbf{B}_{2} are defined as:

$$
\left[\mathbf{B}_{1}\right]_{a, x y}=\left\{\begin{array}{ll}
1 & \text { if } \mathfrak{a}=x \\
-1 & \text { if } \mathfrak{a}=y \\
0 & \text { otherwise }
\end{array} \quad ; \quad\left[\mathbf{B}_{2}\right]_{a b, x y z}= \begin{cases}1 & \text { if }[a, b] \in\{[x, y],[y, z]\} \\
-1 & \text { if }[a, b]=[x, z] \\
0 & \text { otherwise }\end{cases}\right.
$$

- Definition for \mathbf{B}_{k} with $\mathrm{k} \geqslant 2$ is in Appendix.

A coboundary matrix \mathbf{B}_{k}^{\top} (adjoint of \mathbf{B}_{k}) maps ($k-1$)-simplex to its k-th cofaces
Remark. B_{k} is defined on an SC_{ℓ} or a CB_{ℓ}

BACKUP SLIDES

BOUNDARY OPERATORS

Levi-Civita notation \& Permutation parity

Definition S1 (Permutation parity)

Given a finite set $\left\{j_{0}, j_{1}, \cdots, j_{k}\right\}$ with $k \geqslant 1$ and $j_{\ell}<j_{m}$ if $\ell<m$, the parity of a permutation $\sigma\left(\left\{j_{0}, \cdots, j_{k}\right\}\right)=\left\{\mathfrak{i}_{0}, \mathfrak{i}_{1}, \cdots, \mathfrak{i}_{k}\right\}$ is defined to be

$$
\begin{equation*}
\epsilon_{i_{0}, \cdots, i_{k}}=-1^{N(\sigma)} \tag{S1}
\end{equation*}
$$

Here $N(\sigma)$ is the inversion number of σ. The inversion number is the cardinality of the inversion set, i.e., $N(\sigma)=\#\left\{(\ell, \mathfrak{m}): \mathfrak{i}_{\ell}>\mathfrak{i}_{\mathfrak{m}}\right.$ if $\left.\ell<\mathfrak{m}\right\}$. We say σ is an even permutation if $\epsilon_{\mathfrak{i}_{0}, \cdots, \mathfrak{i}_{k}}=1$ and an odd permutation otherwise.

Remark. The Levi-Civita symbol for $k=1$ (left) and 2 (right) is

$$
\epsilon_{i j}=\left\{\begin{array}{ll}
+1 & \text { if }(i, j)=(1,2) \\
-1 & \text { if }(i, j)=(2,1)
\end{array} ; \epsilon_{i j k}= \begin{cases}+1 & \text { if }(i, j, k) \in\{(1,2,3),(2,3,1),(3,1,2)\} \\
-1 & \text { if }(i, j, k) \in\{(3,2,1),(1,3,2),(2,1,3)\}\end{cases}\right.
$$

BOUNDARY MAP FOR k-COCHAIN

DEFINITION S2 (BOUNDARY MAP \& BOUNDARY MATRIX)

Let $\mathfrak{i}_{0} \cdots \hat{\mathfrak{i}}_{j} \cdots \mathfrak{i}_{k}:=\mathfrak{i}_{0}, \cdots, \mathfrak{i}_{j-1}, \mathfrak{i}_{\mathfrak{j}+1}, \cdots, \mathfrak{i}_{\mathrm{k}}$, and $\mathfrak{i}_{0} \cdots \tilde{\mathfrak{j}}_{j} \cdots \mathfrak{i}_{k}$ denote $\mathfrak{i}_{\mathfrak{j}}$ insert into $\mathfrak{i}_{0}, \cdots, \mathfrak{i}_{k}$ with proper order, one can define a boundary map (operator) $\mathcal{B}_{k}: \mathfrak{C}_{k} \rightarrow \mathfrak{C}_{k-1}$ which maps a simplex to its face by

$$
\begin{equation*}
\mathcal{B}_{k}\left(\left[i_{0}, \cdots, i_{k}\right]\right)=\sum_{j=0}^{k}(-1)^{j}\left[i_{0} \cdots \hat{i_{j}} \cdots i_{k}\right]=\sum_{j=0}^{k} \epsilon_{i_{j}, i_{0} \cdots \hat{i}_{j} \cdots i_{k}}\left[i_{0} \cdots \hat{i_{j}} \cdots i_{k}\right] \tag{S2}
\end{equation*}
$$

The corresponding boundary matrix $\mathbf{B}_{k} \in\{0, \pm 1\}^{n_{k-1} \times n_{k}}$ can be defined as follow

$$
\left(\mathbf{B}_{k}\right)_{\sigma_{k-1}, \sigma_{k}} \begin{cases}\epsilon_{i_{j}, i_{0} \cdots \hat{i}_{j} \cdots i_{k}} & \text { if } \sigma_{k}=\left[i_{0}, \cdots, i_{k}\right], \sigma_{k-1}=\left[i_{0} \cdots \hat{i}_{j} \cdots \mathfrak{i}_{k}\right] \tag{S3}\\ 0 & \text { otherwise. }\end{cases}
$$

$\left(\mathbf{B}_{k}\right)_{\sigma_{k-1}, \sigma_{k}}$ represents the orientation of σ_{k-1} as a face of σ_{k}, or equals 0 when the two are not adjacent.

BACKUP SLIDES

ADDITIONAL DEFINITIONS

DEFINITION S3 (NEIGHBORHOOD GRAPHS)

δ-radius graph:
$E=\left\{(i, j) \in V^{2}:\left\|x_{i}-x_{j}\right\|_{2} \leqslant \delta\right\} ;$
k-NN graph:
$E=\left\{(i, j) \in V^{2}:\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2} \leqslant \max \left(\rho_{k}\left(\boldsymbol{x}_{\mathrm{i}}\right), \rho_{\mathrm{k}}\left(\boldsymbol{x}_{\mathfrak{j}}\right)\right)\right.$
δ-CkNN graph [Berry and Sauer, 2019]: $E=\left\{(i, j) \in V^{2}: \frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}}{\sqrt{\rho_{k}\left(\boldsymbol{x}_{i}\right) \rho_{k}\left(\boldsymbol{x}_{j}\right)}} \leqslant \delta\right\}$.

\mathbf{W}

A flow (k -cochain) $\boldsymbol{\omega}_{\mathrm{k}}$ on an $\mathrm{SC} / \mathrm{CB}$ can be described by a linear combination of k -simplices:
$\boldsymbol{\omega} \boldsymbol{\omega}_{k}=\sum_{i} \omega_{k, i} \sigma_{i}^{k}$, where $\sigma_{i}^{k} \in \Sigma_{k}$
$■$ Can further denote by $\boldsymbol{\omega}_{k}=\left(\omega_{k, 1}, \cdots, \omega_{k, n_{k}}\right)^{\top} \in \mathbb{R}^{n_{k}}$
■ Space of $\boldsymbol{\omega}_{\mathrm{k}}$ is \mathcal{C}_{k}, which is isomorphic to $\mathbb{R}^{\boldsymbol{n}_{\mathrm{k}}}$

Example. The flow on the toy SC_{2} is $\omega_{1}=7 \cdot[1,2]+2 \cdot[3,5]+$

A flow (k-cochain) $\boldsymbol{\omega}_{k}$ on an SC/CB can be described by a linear combination of k -simplices:

■ $\boldsymbol{\omega}_{\mathrm{k}}=\sum_{i} \omega_{\mathrm{k}, \mathrm{i}} \sigma_{i}^{k}$, where $\sigma_{i}^{k} \in \Sigma_{\mathrm{k}}$
\square Can further denote by $\boldsymbol{\omega}_{\mathrm{k}}=\left(\omega_{\mathrm{k}, 1}, \cdots, \omega_{\mathrm{k}, \mathfrak{n}_{\mathrm{k}}}\right)^{\top} \in \mathbb{R}^{\mathfrak{n}_{\mathrm{k}}}$
■ Space of $\boldsymbol{\omega}_{\mathrm{k}}$ is \mathcal{C}_{k}, which is isomorphic to $\mathbb{R}^{\boldsymbol{n}_{k}}$

Example. The flow on the toy SC_{2} is $\boldsymbol{\omega}_{1}=7 \cdot[1,2]+2 \cdot[3,5]+$ $(-1) \cdot[1,4]$, or

$$
\omega_{1}=\left[\begin{array}{cccccc}
7 & 0 & -1 & 0 & 0 & 2 \\
{[1,2]} & {[1,3]} & {[1,4]} & {[2,3]} & {[3,4]} & {[3,5]}
\end{array}\right] \in \mathbb{R}^{6}
$$

$$
\begin{gathered}
\hat{\mathbf{p}}_{0}=\underset{\mathbf{p}_{0} \in \mathbb{R}^{n_{0}}}{\operatorname{argmin}}\left\|\mathbf{W}_{1}^{1 / 2} \mathbf{B}_{1}^{\top} \mathbf{p}_{0}-\boldsymbol{\omega}\right\|^{2} \\
\hat{\mathbf{p}}_{2}=\underset{\mathbf{p}_{2} \in \mathbb{R}^{n_{2}}}{\operatorname{argmin}}\left\|\mathbf{W}_{1}^{-1 / 2} \mathbf{B}_{2}^{\top} \mathbf{p}_{2}-\boldsymbol{\omega}\right\|^{2} \\
\hat{\mathbf{h}}=\boldsymbol{\omega}-\underbrace{\mathbf{W}_{1}^{1 / 2} \mathbf{B}_{1}^{\top} \hat{\mathbf{p}}_{0}}_{\text {gradient }}-\underbrace{\mathbf{W}_{1}^{-1 / 2} \mathbf{B}_{2} \hat{\mathbf{p}}_{2}}_{\text {curl }}
\end{gathered}
$$

BACKUP SLIDES

APPROXIMATE 1-COCHAIN \& UNDERLYING VECTOR FIELDS

Let $e=[i, j]$, since $\boldsymbol{\omega}_{e}=\int_{0}^{1} \zeta(\boldsymbol{\gamma}(\mathrm{t})) \boldsymbol{\gamma}^{\prime}(\mathrm{t}) \mathrm{dt}$, if given only the vertex-wise vector field $\zeta\left(\boldsymbol{x}_{\mathrm{i}}\right)=\mathbf{f}\left(\boldsymbol{x}_{\mathrm{i}}\right) \in \mathbb{R}^{\mathrm{D}}$, one can approximate the geodesic by $\boldsymbol{\gamma}(\mathrm{t}) \approx \boldsymbol{x}_{\mathrm{i}}+\left(\boldsymbol{x}_{j}-\boldsymbol{x}_{\mathrm{i}}\right) \mathrm{t}$ and the vector field along $\boldsymbol{\gamma}$ by $\mathbf{f}(\boldsymbol{\gamma}(\mathrm{t})) \approx \mathbf{f}\left(\mathbf{x}_{i}\right)+\left(\mathbf{f}\left(\mathbf{x}_{\mathbf{j}}\right)-\mathbf{f}\left(\boldsymbol{x}_{i}\right)\right) \mathbf{t}$, one has,

$$
\begin{align*}
& \omega_{e}=\int_{0}^{1} \mathbf{f}^{\top}(\gamma(\mathrm{t})) \boldsymbol{\gamma}^{\prime}(\mathrm{t}) \mathrm{dt} \approx \int_{0}^{1}\left[\mathbf{f}\left(\boldsymbol{x}_{\mathrm{i}}\right)+\left(\mathbf{f}\left(\boldsymbol{x}_{\mathrm{j}}\right)-\mathbf{f}\left(\boldsymbol{x}_{\mathrm{i}}\right)\right) \mathrm{t}\right]^{\top}\left(\boldsymbol{x}_{\mathrm{j}}-\boldsymbol{x}_{\mathrm{i}}\right) \mathrm{dt} \tag{S4}\\
& =\frac{1}{2}\left(\mathbf{f}\left(\boldsymbol{x}_{\mathrm{i}}\right)+\mathbf{f}\left(\mathbf{x}_{\mathrm{j}}\right)\right)^{\top}\left(\mathbf{x}_{\mathrm{j}}-\boldsymbol{x}_{\mathrm{i}}\right)
\end{align*}
$$

Let $\mathrm{e}=[\mathrm{i}, \mathrm{j}]$, since $\boldsymbol{\omega}_{e}=\int_{0}^{1} \zeta(\boldsymbol{\gamma}(\mathrm{t})) \boldsymbol{\gamma}^{\prime}(\mathrm{t}) \mathrm{dt}$, if given only the vertex-wise vector field $\zeta\left(\boldsymbol{x}_{\mathrm{i}}\right)=\mathbf{f}\left(\boldsymbol{x}_{\mathrm{i}}\right) \in \mathbb{R}^{\mathrm{D}}$, one can approximate the geodesic by $\boldsymbol{\gamma}(\mathrm{t}) \approx \boldsymbol{x}_{\mathrm{i}}+\left(\boldsymbol{x}_{j}-\boldsymbol{x}_{\mathrm{i}}\right) \mathrm{t}$ and the vector field along $\boldsymbol{\gamma}$ by $\mathbf{f}(\boldsymbol{\gamma}(\mathrm{t})) \approx \mathbf{f}\left(\boldsymbol{x}_{i}\right)+\left(\mathbf{f}\left(\mathbf{x}_{\mathbf{j}}\right)-\mathbf{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right) \mathrm{t}$, one has,

$$
\begin{align*}
\omega_{e} & =\int_{0}^{1} \mathbf{f}^{\top}(\gamma(\mathrm{t})) \boldsymbol{\gamma}^{\prime}(\mathrm{t}) \mathrm{dt} \approx \int_{0}^{1}\left[\mathbf{f}\left(\mathbf{x}_{\mathrm{i}}\right)+\left(\mathbf{f}\left(\boldsymbol{x}_{\mathfrak{j}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathrm{i}}\right)\right) \mathrm{t}\right]^{\top}\left(\boldsymbol{x}_{j}-\mathbf{x}_{\mathrm{i}}\right) \mathrm{dt} \tag{S4}\\
& =\frac{1}{2}\left(\mathbf{f}\left(\boldsymbol{x}_{\mathrm{i}}\right)+\mathbf{f}\left(\mathbf{x}_{\mathrm{j}}\right)\right)^{\top}\left(\boldsymbol{x}_{\mathrm{j}}-\boldsymbol{x}_{\mathrm{i}}\right)
\end{align*}
$$

Note that (S4) can be written in a more concise form using boundary operator \mathbf{B}_{1}. Let $F \in \mathbb{R}^{n \times D}$ with $f_{i}=F_{i,:}=\mathbf{f}\left(x_{i}\right)$. Since $\left[\left|\mathbf{B}_{1}^{\top}\right| \mathbf{F}\right]_{[i, j]}=\mathbf{f}\left(\boldsymbol{x}_{i}\right)+\mathbf{f}\left(\boldsymbol{x}_{\mathrm{j}}\right)$, and $\left[-B_{1}^{\top} X\right]_{[i, j]}=x_{j}-x_{i}$. Therefore,

$$
\boldsymbol{\omega}=-\frac{1}{2} \operatorname{diag}\left(\mathbf{B}_{1}^{\top} \mathbf{X F}{ }^{\top}\left|\mathbf{B}_{1}\right|\right)
$$

Let $\mathbf{X}_{E}=-\mathbf{B}_{1}^{\top} \mathbf{X}\left(\right.$ so $\left.\left[X_{E}\right]_{[i, j]}=x_{j}-\boldsymbol{x}_{\mathrm{i}}\right)$ and define $\boldsymbol{\chi}_{\mathrm{E}}$ such that $\left[\chi_{\mathrm{E}}\right]_{[i, j]}=\left\|\boldsymbol{x}_{\mathrm{j}}-\boldsymbol{x}_{\mathrm{i}}\right\|_{2}^{2}$. Given the 1 -cochain $\boldsymbol{\omega}$, one can solve the following D least square problems to estimate the vector field \mathbf{F} on each point $\boldsymbol{x}_{\boldsymbol{i}}$.

$$
\begin{equation*}
\hat{\boldsymbol{v}}_{\ell}=\underset{\boldsymbol{v}_{\ell} \in \mathbb{R}^{\boldsymbol{n}}}{\operatorname{argmin}}\left\{\left\|\left|\mathbf{B}_{1}^{\top}\right| \boldsymbol{v}_{\ell}-\left(\left[\mathbf{X}_{\mathrm{E}}\right]_{:, \ell} \oslash \boldsymbol{x}_{\mathrm{E}}\right) \circ \boldsymbol{\omega}\right\|_{2}^{2}\right\} \forall \ell=1, \cdots, \mathrm{D} \tag{S5}
\end{equation*}
$$

The estimated vector field \hat{F} is

Let $\mathbf{X}_{\mathrm{E}}=-\mathbf{B}_{1}^{\top} \mathbf{X}\left(\right.$ so $\left.\left[\mathrm{X}_{\mathrm{E}}\right]_{[i, j]}=\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{x}_{\mathrm{i}}\right)$ and define $\boldsymbol{\chi}_{\mathrm{E}}$ such that $\left[\mathrm{X}_{\mathrm{E}}\right]_{[i, j]}=\left\|\boldsymbol{x}_{\mathrm{j}}-\boldsymbol{x}_{\mathrm{i}}\right\|_{2}^{2}$. Given the 1 -cochain $\boldsymbol{\omega}$, one can solve the following D least square problems to estimate the vector field \mathbf{F} on each point $\boldsymbol{x}_{\boldsymbol{i}}$.

$$
\begin{equation*}
\hat{\boldsymbol{v}}_{\ell}=\underset{\boldsymbol{v}_{\ell} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\left\|\left|\mathbf{B}_{1}^{\top}\right| \boldsymbol{v}_{\ell}-\left(\left[\mathbf{X}_{\mathrm{E}}\right]_{:, \ell} \oslash \boldsymbol{x}_{\mathrm{E}}\right) \circ \boldsymbol{\omega}\right\|_{2}^{2}\right\} \forall \ell=1, \cdots, \mathrm{D} \tag{S5}
\end{equation*}
$$

\circ, \oslash is Hadamard product and division, respectively. The solution to the ℓ-th least square problem corresponds to estimate $f_{\ell}\left(\boldsymbol{x}_{i}\right)$ from $\frac{1}{2}\left(f_{\ell}\left(\boldsymbol{x}_{i}\right)+f_{\ell}\left(\boldsymbol{x}_{j}\right)\right)$. I.e., (inner product)

$$
\frac{1}{2}\left(f_{\ell}^{\|}\left(x_{i}\right)+f_{\ell}^{\|}\left(x_{j}\right)\right)=\left[\left(\left[X_{E}\right]_{:, \ell} \oslash x_{E}\right) \circ \boldsymbol{\omega}\right]_{[i, j]}=\frac{\left(x_{j, \ell}-x_{i, \ell}\right) \omega_{i j}}{\left\|x_{j}-x_{i}\right\|^{2}}
$$

The estimated vector field \hat{F} is

Let $\mathbf{X}_{\mathrm{E}}=-\mathbf{B}_{1}^{\top} \mathbf{X}\left(\right.$ so $\left.\left[\mathrm{X}_{\mathrm{E}}\right]_{[i, j]}=\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{x}_{\mathrm{i}}\right)$ and define $\boldsymbol{\chi}_{\mathrm{E}}$ such that $\left[\mathrm{X}_{\mathrm{E}}\right]_{[i, j]}=\left\|\boldsymbol{x}_{\mathrm{j}}-\boldsymbol{x}_{\mathrm{i}}\right\|_{2}^{2}$. Given the 1 -cochain $\boldsymbol{\omega}$, one can solve the following D least square problems to estimate the vector field \mathbf{F} on each point $\boldsymbol{x}_{\boldsymbol{i}}$.

$$
\begin{equation*}
\hat{\boldsymbol{v}}_{\ell}=\underset{\boldsymbol{v}_{\ell} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\left\|\left|\mathbf{B}_{1}^{\top}\right| \boldsymbol{v}_{\ell}-\left(\left[\mathbf{X}_{\mathrm{E}}\right]_{:, \ell} \oslash \boldsymbol{x}_{\mathrm{E}}\right) \circ \boldsymbol{\omega}\right\|_{2}^{2}\right\} \forall \ell=1, \cdots, \mathrm{D} \tag{S5}
\end{equation*}
$$

\circ, \oslash is Hadamard product and division, respectively. The solution to the ℓ-th least square problem corresponds to estimate $f_{\ell}\left(\boldsymbol{x}_{i}\right)$ from $\frac{1}{2}\left(f_{\ell}\left(\boldsymbol{x}_{i}\right)+f_{\ell}\left(\boldsymbol{x}_{j}\right)\right)$. I.e., (inner product)

$$
\frac{1}{2}\left(f_{\ell}^{\|}\left(x_{i}\right)+f_{\ell}^{\|}\left(x_{j}\right)\right)=\left[\left(\left[X_{E}\right]_{:, \ell} \oslash x_{E}\right) \circ \boldsymbol{\omega}\right]_{[i, j]}=\frac{\left(x_{j, \ell}-x_{i, \ell}\right) \omega_{i j}}{\left\|x_{j}-x_{i}\right\|^{2}}
$$

The estimated vector field \hat{F} is

$$
\hat{\mathbf{F}}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\hat{v}_{1} & \hat{v}_{2} & \ldots & \hat{\boldsymbol{v}}_{\mathrm{D}} \\
\mid & \mid & & \mid
\end{array}\right] \in \mathbb{R}^{\mathrm{n} \times \mathrm{D}}
$$

BACKUP SLIDES

APPLICATIONS

PROPOSITION S4 (INDUCED DIGRAPH FROM z_{i})

Let $\boldsymbol{z}_{\mathfrak{i}}$ for $\mathfrak{i}=1, \cdots, \beta_{1}$ be the \mathfrak{i}-th homology basis that corresponds to the i-th homology class and G_{i} be the induced digraph of the flow $\boldsymbol{z}_{\mathfrak{i}}$. Then for every $\mathfrak{i}=1, \cdots, \beta_{1}$,

1. there exist at least one cycle in the digraph G_{i} such that every vertex $v \in \mathrm{~V}$ can traverse back to itself (reachable);
2. the corresponding cycle will enclose at least one homology class (no short-circuiting).

Sketch of proof.

■ Reachable: harmonic flow is divergence-free
■ no short-circuiting: from Stoke's theorem and Poincaré Lemma [Lee, 2013]

Example.

$$
z_{i}=\left[\begin{array}{cc}
7 & {[1,2]} \\
2 & {[1,3]} \\
-1 & {[1,4]} \\
3 & {[2,3]} \\
-5 & {[3,4]} \\
2 & {[3,5]}
\end{array}\right] \in \mathbb{R}^{6}
$$

SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

```
Algorithm S1: SpectralLoopFind
Input: \(Z=\left[z_{1}, \cdots, z_{\beta_{1}}\right], V\), E , edge distance d
for \(i=1, \cdots, \beta_{1}\) do
    \(\mathrm{E}_{\mathrm{i}}^{+} \leftarrow\left\{(\mathrm{s}, \mathrm{t}):(\mathrm{s}, \mathrm{t}) \in \mathrm{E}\right.\) and \(\left.\left[z_{\mathrm{i}}\right]_{(\mathrm{s}, \mathrm{t})}>0\right\}\)
    \(\mathrm{E}_{\mathrm{i}}^{-} \leftarrow\left\{(\mathrm{t}, \mathrm{s}):(\mathrm{s}, \mathrm{t}) \in \mathrm{E}\right.\) and \(\left.\left[z_{\mathrm{i}}\right]_{(\mathrm{s}, \mathrm{t})}<0\right\}\)
    \(\tau \leftarrow\) Percentile \(\left(\left|z_{i}\right|, 1-1 / \beta_{1}\right)\)
    \(\left.\mathrm{E}_{\mathrm{i}}^{\times} \leftarrow\left\{e \in \mathrm{E}_{\mathrm{i}}^{+} \cup \mathrm{E}_{\mathrm{i}}^{-}:| | z_{\mathrm{i}}\right]_{e} \mid<\tau\right\}\)
    \(\mathrm{E}_{\mathrm{i}} \leftarrow \mathrm{E}_{\mathrm{i}}^{+} \cup \mathrm{E}_{\mathrm{i}}^{-} \backslash \mathrm{E}_{\mathrm{i}}^{\times}\)
    \(\mathrm{G}_{i} \leftarrow\left(\mathrm{~V}, \mathrm{E}_{\mathrm{i}}\right)\), with weight of \(e \in \mathrm{E}_{\mathrm{i}}\) being \([\mathrm{d}]_{e}\)
    \(\mathrm{d}_{\text {min }}=\mathrm{inf}\)
    for \(e=\left(t, s_{0}\right) \in E_{i}\) do
        \(\mathcal{P}^{*}\left(:=\left[s_{0}, s_{1}, \cdots, t\right]\right), d^{*} \leftarrow \operatorname{Dijkstra}\left(G_{i}\right.\), from \(\left.=s_{0}, t o=t\right)\)
        if \(\mathrm{d}^{*}<\mathrm{d}_{\text {min }}\) then
                \(\left\lfloor\mathfrak{C}_{i} \leftarrow\left[\mathrm{t}, \mathrm{s}_{0}, \mathrm{~s}_{1}, \cdots, \mathrm{t}\right]\right.\)
Return: \(\mathfrak{C}_{1}, \cdots, \mathfrak{C}_{\beta_{1}}\)
```

Build induced digraph from z_{i} :

$$
\begin{gathered}
z_{i}=\left[\begin{array}{cc}
7 & {[1,2]} \\
2 & {[1,3]} \\
-1 & {[1,4]} \\
3 & {[2,3]} \\
-5 & {[3,4]} \\
2 & {[3,5]}
\end{array}\right] \in \mathbb{R}^{6} \\
\Downarrow
\end{gathered}
$$

SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

```
Algorithm S1: SpectralLoopFind
Input: \(\mathbf{Z}=\left[z_{1}, \cdots, z_{\beta_{1}}\right], V\), , edge distance \(\mathbf{d}\)
for \(i=1, \cdots, \beta_{1}\) do
    \(\mathrm{E}_{i}^{+} \leftarrow\left\{(\mathrm{s}, \mathrm{t}):(\mathrm{s}, \mathrm{t}) \in \mathrm{E}\right.\) and \(\left.\left[z_{\mathrm{i}}\right]_{(\mathrm{s}, \mathrm{t})}>0\right\}\)
    \(\mathrm{E}_{\mathrm{i}}^{-} \leftarrow\left\{(\mathrm{t}, \mathrm{s}):(\mathrm{s}, \mathrm{t}) \in \mathrm{E}\right.\) and \(\left.\left[z_{\mathrm{i}}\right]_{(\mathrm{s}, \mathrm{t})}<0\right\}\)
    \(\tau \leftarrow\) Percentile \(\left(\left|z_{i}\right|, 1-1 / \beta_{1}\right)\)
    \(E_{i}^{\times} \leftarrow\left\{e \in E_{i}^{+} \cup E_{i}^{-}:\left|\left[z_{i}\right]_{e}\right|<\tau\right\}\)
    \(\mathrm{E}_{i} \leftarrow \mathrm{E}_{i}^{+} \cup \mathrm{E}_{i}^{-} \backslash \mathrm{E}_{i}^{\times}\)
    \(\mathrm{G}_{i} \leftarrow\left(\mathrm{~V}, \mathrm{E}_{\mathrm{i}}\right)\), with weight of \(e \in \mathrm{E}_{\mathrm{i}}\) being \([\mathrm{d}]_{e}\)
    \(\mathrm{d}_{\text {min }}=\mathrm{inf}\)
    for \(e=\left(\mathrm{t}, \mathrm{s}_{0}\right) \in \mathrm{E}_{\mathrm{i}}\) do
        \(\mathcal{P}^{*}\left(:=\left[s_{0}, s_{1}, \cdots, t\right]\right), d^{*} \leftarrow \operatorname{Dijkstra}\left(G_{i}\right.\), from \(\left.=s_{0}, t o=t\right)\)
        if \(\mathrm{d}^{*}<\mathrm{d}_{\text {min }}\) then
            \(\underline{\mathcal{C}_{i}} \leftarrow\left[\mathrm{t}, \mathrm{s}_{0}, \mathrm{~s}_{1}, \cdots, \mathrm{t}\right]\)
```

Return: $\mathfrak{C}_{1}, \cdots, \mathfrak{C}_{\beta_{1}}$

Thresholding z_{i} :

$$
\text { - } E_{i}^{\times} \quad . E_{i}^{+} \cup E_{i}^{-} \backslash E_{i}^{\times}
$$

- Each homology class has $\approx n_{1} / \beta_{1}$ edges

SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

```
Algorithm S1: SpectralLoopFind
Input: \(Z=\left[z_{1}, \cdots, z_{\beta_{1}}\right], V\), E , edge distance d
for \(i=1, \cdots, \beta_{1}\) do
    \(\mathrm{E}_{i}^{+} \leftarrow\left\{(\mathrm{s}, \mathrm{t}):(\mathrm{s}, \mathrm{t}) \in \mathrm{E}\right.\) and \(\left.\left[z_{\mathrm{i}}\right]_{(\mathrm{s}, \mathrm{t})}>0\right\}\)
    \(\mathrm{E}_{\mathrm{i}}^{-} \leftarrow\left\{(\mathrm{t}, \mathrm{s}):(\mathrm{s}, \mathrm{t}) \in \mathrm{E}\right.\) and \(\left.\left[\mathrm{z}_{\mathrm{i}}\right]_{(\mathrm{s}, \mathrm{t})}<0\right\}\)
    \(\tau \leftarrow\) Percentile \(\left(\left|z_{i}\right|, 1-1 / \beta_{1}\right)\)
    \(\left.\mathrm{E}_{\mathrm{i}}^{\times} \leftarrow\left\{e \in \mathrm{E}_{\mathrm{i}}^{+} \cup \mathrm{E}_{\mathrm{i}}^{-}:| | z_{\mathrm{i}}\right]_{e} \mid<\tau\right\}\)
    \(\mathrm{E}_{i} \leftarrow \mathrm{E}_{i}^{+} \cup \mathrm{E}_{i}^{-} \backslash \mathrm{E}_{i}^{\times}\)
    \(\mathrm{G}_{i} \leftarrow\left(\mathrm{~V}, \mathrm{E}_{\mathrm{i}}\right)\), with weight of \(e \in \mathrm{E}_{\mathrm{i}}\) being \([\mathrm{d}]_{e}\)
    \(\mathrm{d}_{\text {min }}=\mathrm{inf}\)
    for \(e=\left(t, s_{0}\right) \in E_{i}\) do
                \(\mathcal{P}^{*}\left(:=\left[s_{0}, s_{1}, \cdots, t\right]\right), d^{*} \leftarrow \operatorname{Dijkstra}\left(G_{i}\right.\), from \(=s_{0}\), to \(\left.=t\right)\)
                if \(\mathrm{d}^{*}<\mathrm{d}_{\text {min }}\) then
                    \(\mathcal{C}_{i} \leftarrow\left[t, s_{0}, s_{1}, \cdots, t\right]\)
Return: \(\mathfrak{C}_{1}, \cdots, \mathfrak{C}_{\beta_{1}}\)
```

Shortest "loop" with Dijkstra:

- Dijkstra will find a loop for every $\boldsymbol{v} \in \mathrm{V}$ (reachable)
- Every loop obtained is valid (no short-circuiting)

CLASSIFYING ANY 2-DIMENSIONAL MANIFOLD

β_{1} (torus) $=\beta_{1}($ two disjoint holes $)=2$

- Not possible to distinguish these two manifolds only by rank information
■ From Theorem 1, the embedding of $\mathbb{S}^{1} \sharp S^{1}$ can be (roughly) factorized into two "lines"
■ Any loop in \mathbb{T}^{2} is a convex combination of the two homology classes
- Intrinsic dimension $=2$

Remark. Can categorize the manifold \mathcal{M} from \mathbf{Z}
■ With the classification theorem of surfaces [Armstrong, 2013]

Torus: \mathbb{T}^{2}

PROPOSITION S5 (SHAPE OF THE EMBEDDING Z OF A FLAT m-TORUS \mathbb{T}^{m})

The envelope of the first homology embedding (1-cochain) induced by the harmonic 1-form on the flat m-torus \mathbb{T}^{m} is an m-dimensional ellipsoid.

Visualize the basis of harmonic vector fields:

Higher-order simplex clustering [Ebli and Spreemann, 2019]:
■ Theorem 1 supports the use of subspace clustering algorithm in this framework

BACKUP SLIDES

AsSUMPTIONS AND THEOREMS

Connected manifold \mathcal{M}

Simplicial complex	$\hat{S C}_{k}^{(i)}=\left(\hat{\Sigma}_{0}^{(i)}, \cdots, \hat{\Sigma}_{k}^{(i)}\right)$	SC ${ }_{\text {k }}=\left(\Sigma_{0}, \cdots, \Sigma_{k}\right)$
k-Laplacian	$\hat{\mathcal{L}}_{k}^{(i i)}$	\mathcal{L}_{k}
Homology space	$\mathcal{H}_{\mathrm{k}}\left(\mathcal{M}_{\mathrm{i}}\right)$	$\mathcal{H}_{k}(\mathcal{M})$
k-th Betti number	$\beta_{k}\left(\mathcal{M}_{\hat{r}}\right)$	$\beta_{k}(\mathcal{M})$
Homology embedding	\hat{Y}	Y

Remark.

- Notation with ^^:= disjoint manifolds
- $\hat{S C}=\bigcup_{i=1}^{K} \hat{S C}^{(i)} \neq S C$

DATA SAMPLED FROM A DECOMPOSIBLE MANIFOLD

ASSUMPTION 1

1. $\mathcal{H}_{\mathrm{k}}(\mathrm{SC})$ (discrete) is isomorphic to the homology group $\mathrm{H}_{\mathrm{k}}(\mathcal{M}, \mathbb{R})$ (continuous)
2. Assume that $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{k}$ and the isomorphic condition holds for every $\mathcal{M}_{\mathfrak{i}}$, i.e.,

$$
\mathcal{H}_{k}\left(\hat{\mathrm{SC}}^{(i)}\right) \cong \mathcal{H}_{\mathrm{k}}\left(\mathcal{M}_{\mathfrak{i}}\right) \text { for } i=1, \cdots, k .
$$

Remark.

1. Any procedure for constructing SC or weight function for \mathcal{L}_{k} is acceptable
2. Manifold \mathcal{M} can be decomposed

- Mostly true except for the known hard case of 4-manifolds

TOPOLOGY IS PRESERVED DURING CONNECTED SUM

AsSUMPTION 2

Denote the set of destroyed and created k -simplexes during connected sum by $\mathfrak{D}_{\mathrm{k}}$ and $\mathfrak{C}_{\mathrm{k}}$; $\mathfrak{N}_{k}=\Sigma_{k} \backslash \mathfrak{C}_{k}=\hat{\Sigma}_{k} \backslash \mathfrak{D}_{k}$ is the set of non-intersecting simplexes. Then

1. no k-homology class is created during the connected sum process, i.e.,

$$
\beta_{\mathrm{k}}(\mathrm{SC})=\sum_{i=1}^{\mathrm{K}} \beta_{\mathrm{k}}\left(\hat{S C}^{(i)}\right) ; \text { and }
$$

2. The minimum eigenvalues of $\mathcal{L}_{k}^{\mathcal{C}, \mathfrak{C}}$ and $\hat{\mathcal{L}}_{k}^{\mathfrak{D}, \mathfrak{D}}$ are bounded away from the eigengaps δ_{i} of $\mathcal{L}_{k}^{(\mathfrak{i i})}$, i.e., $\min \left\{\lambda_{\min }\left(\mathcal{L}_{k}^{\mathcal{C}, \mathfrak{C}}\right), \lambda_{\text {min }}\left(\hat{\mathcal{L}}_{\mathrm{k}}^{\mathfrak{D}, \mathfrak{D}}\right)\right\} \gg \min \left\{\delta_{1}, \cdots, \delta_{\mathrm{K}}\right\}$.

Remark.

1. If $\operatorname{dim}(\mathcal{M})>k$, then $\mathcal{H}_{k}\left(\mathcal{M}_{1} \sharp \mathcal{N}_{2}\right) \cong \mathcal{H}_{k}\left(\mathcal{N}_{1}\right) \oplus \mathcal{H}_{k}\left(\mathcal{N}_{2}\right)$ [Lee, 2013]
2. E.g., it happens when \mathfrak{C}_{k} and \mathfrak{D}_{k} are cliques contained in small balls

SMALL PERTURBATIONS IN THE $(k+1)$-SIMPLEX SET

AsSUMPTION 3 (INFORMAL, SEE ALSO ASSUMPTION 6.4 IN THE THESIS)

Let $\tilde{\boldsymbol{w}}_{\mathrm{k}}=\left|\mathbf{B}_{\mathrm{k}+1}\left[\mathfrak{N}_{\mathrm{k}}, \mathfrak{N}_{\mathrm{k}+1}\right]\right| \boldsymbol{w}_{\mathrm{k}+1}, \tilde{\boldsymbol{w}}_{\mathrm{k}-1}=\left|\mathbf{B}_{\mathrm{k}}\left[., \mathfrak{N}_{\mathrm{k}}\right]\right| \tilde{\boldsymbol{w}}_{\mathrm{k}}$. For $\ell=\mathrm{k}$ or $\mathrm{k}-1$, we have

$$
\begin{array}{ll}
\left|\mathfrak{C}_{k}\right| \text { is small: } & \max _{\sigma \in \mathfrak{N}_{\ell}}\left\{w_{\ell}(\sigma) / \tilde{w}_{\ell}(\sigma)-1\right\} \leqslant \epsilon_{\ell} ; \\
\left|\mathfrak{D}_{\mathrm{k}}\right| \text { is small: } & \max _{\sigma \in \mathfrak{N}_{\ell}}\left\{\hat{w}_{\ell}(\sigma) / \tilde{w}_{\ell}(\sigma)-1\right\} \leqslant \epsilon_{\ell} ; \text { and } \\
\text { The net effect is small: } & \max _{\sigma \in \mathfrak{N}_{\ell}}\left\{\left|w_{\ell}(\sigma) / \hat{w}_{\ell}(\sigma)-1\right|\right\} \leqslant \epsilon_{\ell}^{\prime} .
\end{array}
$$

1. Not too many triangles are created/destroyed during connected sum
2. Sparsely connected manifold

Density in the connected sum region should be smaller than other regions
mpirically, the perturbation is small even when \mathcal{M} is not sparsely connected

Sketch of proof. The proof (in Supplement) is based on

1. Bound the error (DiffL ${ }_{k}^{\text {up }}$ and DiffL ${ }_{k}^{\text {down }}$ terms) between \mathcal{L}_{k} and $\hat{\mathcal{L}}_{\mathrm{k}}$ with $\tilde{\mathcal{L}}_{\mathrm{k}}$;

- $\tilde{\mathcal{L}}_{\mathrm{k}}:=$ the Laplacian after removing the k -simplices in both $\mathfrak{C}_{\mathrm{k}}$ and $\mathfrak{D}_{\mathrm{k}}$ during connected sum

2. Use of a variant of the Davis-Kahan theorem [Yu et al., 2015] (the spectral norm $\|\cdot\|)$; and
3. Bound the spectral norm of \mathcal{L}_{k} for a simplicial complex [Horak and Jost, 2013]

$$
\left\|\mathcal{L}_{\mathrm{k}}\right\|_{2} \leqslant \mathrm{k}+2 .
$$

- Any $(\mathrm{k}+1)$-simplex has $(\mathrm{k}+2)$ faces

SUBSPACE PERTURBATION FOR CUBICAL COMPLEX

PROPOSITION S6

Given an up k-Laplacian $\mathcal{L}_{\mathrm{k}}^{\mathrm{up}}=\boldsymbol{A}_{\mathrm{k}+1} \boldsymbol{A}_{\mathrm{k}+1}^{\top}$ with $\boldsymbol{A}_{\mathrm{k}+1}=\mathbf{W}_{\mathrm{k}}^{-1 / 2} \mathbf{B}_{\mathrm{k}+1} \mathbf{W}_{\mathrm{k}+1}^{1 / 2}$ built from a cubical complex, we have

$$
\left\|\mathcal{L}_{\mathrm{k}}^{\mathrm{up}}\right\|_{2} \leqslant \lambda_{\mathrm{k}}=2 \mathrm{k}+2
$$

Sketch of proof. The $(2 k+2)$ term comes from the fact that a $(k+1)$-cube has $(2 k+2)$ faces. The rest of the proof follows from [Horak and Jost, 2013].

COROLLARY S7 (\mathcal{L}_{k} BUILT FROM A CUBICAL COMPLEX)
Under Assumptions 2-3 with DiffL ${ }_{k}^{\text {up }}$ as well as DiffL ${ }_{k}^{\text {down }}$ defined in Theorem 1 and $\lambda_{k}=2 k+2$, there exists a unitary matrix \mathbf{O} such that (1) holds.

[^0]: ${ }^{1}$ We thank the anonymous reviewers for suggesting some of these directions to explore.

