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MOTIVATION

Embedding of spectral clustering
m Structure of the embedding is known:
» Orthogonal cone structure (OCS) [Schiebinger et al., 2015]
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MOTIVATION

Embedding of spectral clustering
m Structure of the embedding is known: ‘ D
» Orthogonal cone structure (OCS) [Schiebinger et al., 2015] & FEY
m Clusters (red/blue) can be identified from the embedding ) / s
m Spectral clustering := O-homology embedding -

What about the higher-order cases?

15 coordinate  2™%c00 3 ordinate 4™ coordinate

m Empirical observation [Ebli and Spreemann, 2019] i
» Embedding is a “union” of subspaces

m Localize the “subcomponents” of a manifold

Main contribution
m A theoretical analysis of the above observation
» Using the concepts of connected sum and matrix perturbation theory

m Data-driven decomposition algorithm + identifying loops (side product)
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DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from M) (Want to approximate)
Discrete Continuous
Simplicial complex SCy Manifold M
k-cochain Wy k-form Cx
Boundary matrix By Codifferential operator Oy
Coboundary matrix B[ Exterior derivative dr_1
Discrete k-Laplacian Ly Laplace-de Rham operator Ay
k-homology space Hy € R™  k-homology group Hy (M, R)

m Simplicial complex
> SC@ = (Zo,zl,--- ,Z@) = (V,E,T,-~- ,ZU
> = |2kl
m Clique complex of G
» fill all triangles, tetrahedrons, ..., (all k-cliques) in G




DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from M) (Want to approximate)
Discrete Continuous
Simplicial complex SCy Manifold M
k-cochain Wi k-form Cx
Boundary matrix By Codifferential operator Ok
Coboundary matrix BE Exterior derivative di_1
Discrete k-Laplacian Ly Laplace-de Rham operator Ay
k-homology space Hy CR™<  k-homology group Hy (M, R)

—1/2 1/2
A=W, "BW
SYMMETRIZED k-LAPLACIANS AL g—1 265
[HORAK AND JOST, 2013] » Normalized boundary matrix
m Lo=A1A] =1-D /2KD /2

» Symmetrized graph Laplacian

d up
g down £ m L, € RMxXnk w

Ly =AL AL +AL 1AL
S~ Y———



DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from M) (Want to approximate)
Discrete Continuous
Simplicial complex SCy Manifold M
k-cochain Wi k-form Cx
Boundary matrix By Codifferential operator Ok
Coboundary matrix BE Exterior derivative di_1
Discrete k-Laplacian Ly Laplace-de Rham operator Ay
k-homology space Hy CRR™<  k-homology group Hy (M, R)
[of b2
m k-homology space: Hy = ker(Ly) I
[Lim, 2020, Warner, 2013] l

m ki Betti number By = dim () L. T
m k-homology embedding Y € R™*PBx is the basis of Hy

m Can estimate a basis of vector fields from Y fork =1 8§ A\/
[Chen et al., 2021] ‘

\
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CONNECTED SUM AND MANIFOLD (PRIME) DECOMPOSITION
The connected sum [Lee, 2013] M = My 4Moy: ‘

1. removing two d-dimensional “disks” from My and A /M2

M> (shaded area)
2. gluing together two manifolds at the boundaries

MiiMs
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CONNECTED SUM AND MANIFOLD (PRIME) DECOMPOSITION
The connected sum [Lee, 2013] M = My 4Moy: .

1. removing two d-dimensional “disks” from My and A /MZ

M> (shaded area)
2. gluing together two manifolds at the boundaries

MiiMa
Existence of prime decomposition: factorize a manifold M = Mjf - - - M, into M;'s so
that M is a prime manifold
m d = 2: classification theorem of surfaces [Armstrong, 2013]

m d = 3: the uniqueness of the prime decomposition was shown by Kneser-Milnor
theorem [Milnor, 1962]

m d > 5: [Bokor et al., 2020] proved the existence of factorization (but they might

not be unique)
W



PROBLEM FORMULATION




NOTATIONS

k-Laplacian matrix

Ly

(symmetric matrix)

Observed points
sampled from M1#M2

MM

Build simplicial complex from points 1

Ly,

A

-Y k

Homology embedding
of k-Laplacian

Y

“up to a rotation”




THEORETIC AND ALGORITHMIC AIM

Theoretic aim

m Study the geometric properties of Y Embedding of spectral clustering
> Recovering the homology basis of each prime manifold M; \
» RecoverY (Ipcalized, support on each M;) from Y (coupled,
rotation of Y) s I8y
m Provide an analogous theorem to the OCS /; Cluser]
[Meild and Shi, 2001, Ng et al., 2002, Schiebinger et al., 2015] in &

spectral clustering (Ho)



THEORETIC AND ALGORITHMIC AIM

Theoretic aim
m Study the geometric properties of Y Bmbedding of spectral clustering

> Recovering the homology basis of each prime manifold M;
» RecoverY (Ipcalized, support on each M;) from Y (coupled,
rotation of Y)

m Provide an analogous theorem to the OCS /: G
[Meild and Shi, 2001, Ng et al., 2002, Schiebinger et al., 2015] in &
spectral clustering (Ho)

b2

Algorithmic aim
m The null space basis of Ly is only
identifiable up to a unitary matrix

» Y is less interpretable than Z!!
m Proposed a data-driven approach to
obtain Z fromY
» Approximate Y with Z




CONNECTED SUM AS A MATRIX PERTURBA-
TION




ASSUMPTIONS
1. Points are sampled from a decomposable manifold
» k-fold Connected sum: M = Mqf--- tMK .

» H;y (SC) (discrete) and Hy (M, IR) (continuous) are W
isomorphic. Also for every M; /

m Works for any consistent method to build £y m
m We use our prior work [Chen et al., 2021] for £1

MiiMa
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2. No k-homology class is created/destroyed during the connected sum
> If dim(M) > k, then Fy (M1Mo) = Hy (My) B 9'(@3\/[2) [Lee, 2013]
» [Technical] The eigengap of Ly is the min of each LA)}((HJ: 5 =min{d1, -, 04}



ASSUMPTIONS
1. Points are sampled from a decomposable manifold
» k-fold con_nected sum: M = Mqf--- tMK .

» H;y (SC) (discrete) and Hy (M, IR) (continuous) are W
isomorphic. Also for every M; /

m Works for any consistent method to build £y m
m We use our prior work [Chen et al., 2021] for £1
MiiMs
2. No k-homology class is created/destroyed during the connected sum

> If dim(M) > k, then i (M1EMo) = Fi (M) & J{K(Mz) [Lee, 2013]
» [Technical] The eigengap of Ly is the min of each LA)}((HJ: 5 =min{d1, -, 04}

3. Sparsely connected manifold
» Not too many triangles are created/destroyed during connected sum (for k = 1)
» Empirically, the perturbation is small even when M is not sparsely connected
» [Technical] Perturbations of €-simplex set X, are small (eq and e; are small)

ford =%k k—1
2



SUBSPACE PERTURBATION

THEOREM 1

Under Assumptions 1-3, there exists a unitary matrix O € RP<*Bx sych that

81 ||| DiffLio||* + ||DiffLP| ]
min{d1, - -+, 0«}

oo <

k X

2
{2,/612—%-612—0—(14-\/6,2) €1 +4/E— } (k+1)%; and

i) < [2 e{<+e{<+2ek+4\/a] (k+2)2.
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SUBSPACE PERTURBATION

THEOREM 1

Under Assumptions 1-3, there exists a unitary matrix O € RP<*Bx sych that

81 ||| DiffLio||* + ||DiffLP| ]
min{d1, -+, d«} '

Yor,.: *Y\)tk,:OHF <

with
H Diff down 2
k

2
<{2,/e{<+e{<+<1+,/e{<) €1 +4/Er— } (k+1)%; and

i) < [2 e{<+e{<+2ek+4\/a] (k+2)2.

m Assu. 2: no topology is destroyed/created
m Assu. 3: sparsely connected

m 91: bound only simplexes that are not altered during connected sum



DECOMPOSITION ALGORITHM IN THE HARMONIC EMBEDDING Y

1st 2nd 3rd 4th
- | | oot Input: Y (Coup|ed)
% o * | x | . w2 Qutput: Z (localized, approx. of Y)
4000 1 1 1002
2000 T T 1-0.04
0.06 12000 1 -0.06
2w " o0 - : * 000 &
0.04 2000 T -—0.04
Z om0 g 1 4 000 - 000 &

, o A 2 8Bx-(-)
e L S Yor: = Vo, O < R
. . H Ny,: RIS 1P min{d1,---, 0k}

004 - - 10000 10000
002 - - 5000 s00
3 o000 + 1 + 1 . 6000 6000 +

! | w  Estimate O with Independent Com-
] ] = ponent Analysis (ICA)

006 - - o o
005 000 005 005 0.00 005 005 000 005 7 005 0.00 005
Ist 2nd 3rd ith

embeddingz  —— Harm, edding y
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APPLICATIONS

m Classifying any 2-manifold
» S4S! -£ T2 even though B1 = 2 for both
» Proposition 4: 1-homology embedding of
T™ is an m-dimensional ellipsoid

Two disjoint holes: glygl Torus: T?

10
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m Visualize the basis of harmonic vector fields .
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m Classifying any 2-manifold
» S4S! -£ T2 even though B1 = 2 for both
» Proposition 4: 1-homology embedding of 1toordinate  2"%ordinate  3"%oordinate  4Meoordinate
T™ is an m-dimensional ellipsoid ; : ' )

m Visualize the basis of harmonic vector fields .

m Higher-order simplex clustering
[Ebli and Spreemann, 2019]
» Theorem 1 supports their use of subspace
clustering algorithm
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APPLICATIONS

m Classifying any 2-manifold
» S14S1 £ T2 even though B1 = 2 for both
» Proposition 4: 1-homology embedding of
T™ is an m-dimensional ellipsoid

rd th
3 %oordinate 4" coordinate

m Visualize the basis of harmonic vector fields
m Higher-order simplex clustering
[Ebli and Spreemann, 2019]
» Theorem 1 supports their use of subspace
clustering algorithm

m Shortest homologous loop detection
» Proposition 3: a non-trivial loop corresponding to the
ith column of the homology embedding can be
obtained using Dijkstra algorithm
» Using the factorized homology embedding Z ensures
that each loop corresponds to a single homology class

10



EXPERIMENTS




Two disjoint holes S'#S!:
m Inset: estimated vector field from the
corresponding basis with [Chen et al., 2021]

m Red and yellow (z1 and z») are more localized
than green and blue

SYNTHETIC MANIFOLDS: TWO DISJOINT HOLES S!S AND TORI T™




SYNTHETIC MANIFOLDS: TWO DISJOINT HOLES Slﬂsl AND TORI' ' T™
Two disjoint holes S'#S!:
m Inset: estimated vector field from the
corresponding basis with [Chen et al., 2021] Y1

m Red and yellow (z1 and z») are more localized
than green and blue

E‘é‘,_« Short !

Extracted loops from 2

Homology embedding 2

m-tori T™:
m Homology embedding of T? is
different from that of S'4S!
» Classify them by Proposition 4
m Z of T3 is an ellipsoid

2-torus T?

3-torus T3
03




SYNTHETIC MANIFOLDS. COMPLEX SURFACES

1st 2nd 3rd 4th
s ob 005 005 oty 005 005 0d 005 005 oft 005
12000 ] ] “006
10000 1 { 004
] ] Genus-2 surface:
= 6000 . - x - . 000 = Extracted loops
4000 T T --002
2000 - 1 —om
0 - ] 06 s
0.06 12000 1 -0.06 ~ 3
0.04 10000 < -0.04 5
00 5000 1 002
2 o . - . : * om0 & L
0 1000 1 o
004 200 : oo
006t , Al . , it , 1o
0.06 - 12000 -0.06 *
0.04 T 10000 -0.04 Y e
0 { 5000 002
E - - - 6000 ¥ o0 E )
00 ] 000 —om w
004 1 200 oo
006t , it , ol : — , L 10
006 ] ] 12000 12000
004 { ] 1000 10000
00 { { 5000 800
g 0w + 1 + 1 . oy w00 £
002 : - 000 1000
001 ] : 200 2000
00 0.05 0.00 0.05 N 0.05 0.00 0.05 N 0.05 0.00 0.05 o 0.05 0.00 0.05 0
15t 2nd 3 ith

—— Indep. harmonic embeddingz  —— Harmonic embedding y




SYNTHETIC MANIFOLDS. COMPLEX SURFACES

2nd

3rd

ith

12000
10000
5000
6000
4000

2000

0
006
004
002
000
002
004

006

006
004
002
000
002
004

006
006

004
002
000
002
004

006

005

005

1st
0.00

000
Ist

2nd
005 oo 0%
-
12000
1000
8000
-
o0
2000
: +
: +
obs s o
2nd

—— Indep. harmonic embedding

3rd
005 005 000
T x
-
12000
10000,
8000
6000
4000
2000
- .
005 005 0.00

—— Harmonic embedding y

005

12000
10000
8000
6000
4000
2000

o5 °

005

005

4th
0.00

0.00
1

005

005

006
004
002
000 =
-002
004

-006
006
004
002
-000 &
-0
004
006
006

004

002

3rd

0.00
-0

004

006
12000

10000
5000
oo 3
o0
200

0

Genus-2 surface:

Extracted loops

Concatenation of 4 tori:

Extracted loops from Y Extracted loops from Z




REAL DATASETS
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Y
- 0 x
ToccH (green)
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REAL DATASETS
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0 x
ToccH (green)
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DISCUSSION




PRIOR WORK

Geometry/shape for the Hy embedding.

m Pivotal for spectral clustering and inference algorithms for the stochastic block
models

» Using matrix perturbation theory
[Ng et al., 2002, Wan and Meila, 2015, von Luxburg, 2007]
» Under the assumption of a mixture model [Schiebinger et al., 2015]

Higher-order homology embeddings (k > 0).

m Reported empirically that the homology embedding is approximately distributed on
the union (directed sum) of subspaces [Ebli and Spreemann, 2019]

» Subspace clustering algorithms [Kailing et al., 2004] were applied to cluster

edges/triangles




CONTRIBUTIONS

m Generalize the study of embedding of the spectral clustering to higher-order
homology embedding of H

m Our analysis is made possible by expressing the k-fold connected sum as a matrix
perturbation

» Theoretical: the k-homology embedding can be approximately factorized into parts,
with each corresponding to a prime manifold given a small perturbation

» Algorithmic: identify each decoupled subspace using ICA

» Easy to extend to cubical complexes in image analysis

m Applications in shortest homologous loop detection, classifying any 2-dimensional
manifold, and visualizing harmonic vector fields.

m Support our theoretical claims by comprehensive experiments on synthetic and real
datasets




FUTURE WORK!

1. Extend our framework to a multiple spatial resolution approach
» The persistent spectral methods [Wang et al., 2020, Meng and Xia, 2021]

2. Explore the connection between the proposed framework and the disentangled
representations [Zhou et al., 2020]

3. Investigate the success/failure conditions of the proposed spectral homologous
loop detection algorithm

1We thank the anonymous reviewers for suggesting some of these directions to explore. w




THANK YOU VERY MUCH!
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BACKUP SLIDES

SIMPLICIAL COMPLEXES, COCHAINS, AND BOUNDARY MATRICES

W



HIGH-DIMENSIONAL I.I.D. SAMPLES AND NEIGHBORHOOD GRAPH

m Observed datax; € RP fori=1,---,n sampled
(i.i.d.) from a d-manifold f
» Called a point cloud @\
m Local low dimensional geometry is encoded in local

distances, triangles, tetrahedra, etc.

» Represented by a neighborhood graph B

0-RADIUS NEIGHBORHOOD GRAPH

G = (V,E) with
m the vertex set V on every x;’s (index set)
m the edge set E being

E={{j) € V?:|xi—xl2 <8}



SIMPLICIAL AND CUBICAL COMPLEXES — |

SIMPLICIAL COMPLEX SC

An SC is a set of simplices so that:

1. Every face of a simplex from SC is also in SC
2. 01N oy forany o1, 0, € SCis a face of both o7 and o>




SIMPLICIAL AND CUBICAL COMPLEXES — |

SIMPLICIAL COMPLEX SC
An SC is a set of simplices so that:
1. Every face of a simplex from SC is also in SC
2. 01N oy forany o1, 0, € SCis a face of both o7 and oy

)
m X, is the collection of £-simplices oy, then O D—6
SCx = (Ze)i=o = (To, 1, -+, L) .
Not an SC

m The cardinality of Ly is g = |Zy]

Remark.
1. Agraphis: G=SC; = (V,E) = (Z9, £1)
2. We mostly focus on SCo, = (V,E, T) = (Zg, Z1, X>5)




SIMPLICIAL AND CUBICAL COMPLEXES — |l

CLIQUE COMPLEX
A clique complex of a graph G = (V, E) is a simplicial complex SCy = (Zg, -+, k), with
the £-th simplex set £, being the set of all £-cliques

©) ™ ©)

0‘9 ® 0& 0%

Vil NY L A

Graph G NOT a clique complex of G A clique complex of G

Remark. The clique complex built from §-radius graph = Vietoris-Rips (VR) complex

W



SIMPLICIAL AND CUBICAL COMPLEXES — |l

CLIQUE COMPLEX
A clique complex of a graph G = (V, E) is a simplicial complex SCy = (Zg, -+, k), with
the £-th simplex set £, being the set of all £-cliques

© (2) (2)
0690 0%90 0%99
® © ® ©
Graph G NOT a clique complex of G A clique complex of G

Remark. The clique complex built from §-radius graph = Vietoris-Rips (VR) complex

CUBICAL COMPLEX (INFORMAL)
A cubical complex CByx = (Ko, -+ , Ky ) is a collection of sets K, of £-cubes

Remark. CBy is widely used for image datasets w




AN SC, DEFINES (CO-)BOUNDARY MATRICES B; AND B,

(1, 2)
(1, 3) =4l
B; = E‘ (1,4)
# of col = ny Il (2 3) 1
(1,2) (1,3) (1,4) 2,3) (3, 4) (3,5) (5, 6) (5,8) (6,7) (7,8) (9, 10) % (3, 4>
T 1 T T o (3, 5)
F ;'Zi | : % 1 1 ft Eg 2;
2 5 1 1 ’
21| ¢ 1 1 6,7)
Slle 5 4 (7.8)
9
1

é



k-COCHAIN

An edge flow (1-cochain) w; is a flow on edges (1-simplex) of SC/CB

B w; =) ;wpiei, wheree; € E
m Can further denote by w; = (w11, - ,wlynl)T e R™
» Set of 4+ weights on edges

m Space of w (= @7) is isomorphic to R™
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k-COCHAIN

An edge flow (1-cochain) w; is a flow on edges (1-simplex) of SC/CB

B w; =) ;wpiei, wheree; € E
m Can further denote by w; = (w11, - ,wlynl)T e R™
» Set of 4+ weights on edges

m Space of w (= @7) is isomorphic to R™

Example. w; =7-[1,2]+2-[3,5]+(—1)-[1, 4]

[7 o -1 0 o0 2
W1=1112 1.3 1.4 2.3 3.4 [3,5

Wy := HIGHER-ORDER GENERALIZATION OF W1

A k-cochain wy is a flow on k-simplex of SC/CB

]EIRG



BACKUP SLIDES

THE DISCRETE k-LAPLACIAN




HIGHER-ORDER LAPLACIANS

k-LAPLACIANS
Unnormalized k-Laplacian [Eckmann, 1944]: Ly = BIBk + Bk+1BI+1;
S ———
Ldkown LLllp
Random-walk k-Laplacian [Horak and Jost, 2013]: Ly = By W2, BxWy + W 'B,W,B, ;

up
Liown Lk

Symmetrized k-Laplacian [Schaub et al., 2020]: L8 =A AL +FAL 1AL

s,down s,up
'C‘k Lk

mA; = w;i/fng;/Q (for £ =k, k+ 1) is the normalized boundary matrix
m L= WL/QLka/2 has the same spectrum as Ly [Schaub et al., 2020] w



THE UP- AND DOWN-1-LAPLACIAN

B{ w,! B;
Lcllown _ \ e R™ X1
Ny XMNg Mo XNy N X N1 n; Xnip
Wfl B, W, B,
L;p: \ G]Rn]Xn]

n; XnNng nig X nNo N2 X N Ny X Ny w



k-LAPLACIANS ARE THE EXTENSIONS OF GRAPH LAPLACIANS

mlp= BlBlT is the unnormalized graph Laplacian:
deg(i) ifi=j
Lo=B:B] ={—1 ifi~j =D-A
0 otherwise




k-LAPLACIANS ARE THE EXTENSIONS OF GRAPH LAPLACIANS

mlp= BlBlT is the unnormalized graph Laplacian:

deg(i) ifi=j
Lo=B;B] ={-1 ifi~j =D-A
0 otherwise

By letting Wo = diag(|B1/W11) = diag (| X ; wu} _)=D.

m L= Wa BlW1131 is the random-walk graph Laplacian:
1 ifi=j

Lo =D 'BiWiB{ ={ —gd5 ifi#j =I-D'A

0 otherwise w



BACKUP SLIDES

HODGE LAPLACIAN, DIFFERENTIAL GEOMETRY, AND TOPOLOGY

W



k-HOMOLOGY SPACE

HARMONIC VECTOR SPACE

The harmonic vector space Hj € IR™ is a subspace of the k-cochain defined as the null
of Lk

He ={w € R™: Lyw = 0}.

Remark. Similar definition works for Ly or £3, as well as its continuous counterpart
(using k-differential forms and Ay)

W



k-HOMOLOGY SPACE

HARMONIC VECTOR SPACE

The harmonic vector space Hj € IR™ is a subspace of the k-cochain defined as the null
of Lk

He ={w € R™: Lyw = 0}.

Remark. Similar definition works for Ly or £3, as well as its continuous counterpart
(using k-differential forms and Ay)

B [he k-th homology space Hy := ker(By)/im(By.1)
B Hy = Hy [Lim, 2020, Warner, 2013]
m The k-th Betti number By := dim(Hy) = dim(ker(£Ly))

W



CONNECTION TO THE CONTINUOUS OPERATORS

(Finite samples from M) (Want to approximate)
Discrete Continuous
Simplicial/Cubical complex SC; (or CB;) Manifold M
k-cochain Wi k-form Cx
Boundary matrix By Codifferential operator Ok
Coboundary matrix BI Exterior derivative dx_1
Discrete k-Laplacian Ly Laplace-de Rham operator Ay
k-homology space Hi € R™  k-homology group Hy (M, R)

W



BACKUP SLIDES

BOUNDARY MATRICES




BOUNDARY MATRIX

A boundary matrix By, € R™<*™-1 maps a k-simplex to its (k — 1)-th faces
m With [x,y,z] € T, B; and B, are defined as:

1 ifa=x 1 if [a, b] € {[x,y], ly, zl}
[Bl]a,xy =q-1 ifa= Yy , [B2]ab,xyz =41 if [a, b] = [x, z]
0 otherwise 0 otherwise

m Definition for By with k > 2 is in Appendix.

W



BOUNDARY MATRIX

A boundary matrix By, € R™<*™-1 maps a k-simplex to its (k — 1)-th faces
m With [x,y,z] € T, B; and B, are defined as:

1 ifa=x 1 if [a, b] € {[x,y], ly, zl}
[Bl]a,xy =q—-1 ifa=y ; [B2]ab,xyz =< -1 ifla,b] =[x, 2]
0 otherwise 0 otherwise

m Definition for By with k > 2 is in Appendix.

A coboundary matrix B[ (adjoint of By) maps (k — 1)-simplex to its k-th cofaces

Remark. By is defined on an SCy or a CBy w



BACKUP SLIDES

BOUNDARY OPERATORS




LEVI-CIVITA NOTATION & PERMUTATION PARITY

DEFINITION S1 (PERMUTATION PARITY)

Given a finite set {jo,j1, -+, jxt withk > 1 and j¢ < jm if £ < m, the parity of a
permutation o({jo, - - ,jx}) ={lo, 11, - , ik} is defined to be
€ig,-.. 1y, = —1N() (S1)

Here N (o) is the inversion number of o. The inversion number is the cardinality of the
inversion set, i.e., N(o) = #{({, m) : i¢ > i if £ < m}. We say o is an even permutation
if €4,,...,4, = 1 and an odd permutation otherwise.

Remark. The Levi-Civita symbol for k = 1 (left) and 2 (right) is

o+ f (i,j):(1,2)_€“ 41 if (45,0 €{(1,2,3),(2,3,1),(3,1,2)}
= = it (1L,j)=(21)" 9 =1 if (i,j,k) €{(3.2,1),(1,32),(21,3)}

—




BOUNDARY MAP FOR k-COCHAIN

DEFINITION S2 (BOUNDARY MAP & BOUNDARY MATRIX)

Letio-ufj i =10, j—1, {541, - 1, @nd io"'iv]' - -1, denote ij insert into
ig, - - , 1k With proper order, one can define a boundary map (operator) By : Cx — Cx_1
which maps a simplex to its face by

k k
Bu(fio, -+ i) = Y (1) [ig---j--- =D &gt lioiid  (52)

j=0 j=0
The corresponding boundary matrix By € {0, £1}™«-1*" can be defined as follow

if ox =T, -, ikl ox—1 =Mo" -1l 53)

€. . ~ .
(Bi)o
k—1,0k .
0 otherwise.

(Bx) o, ;.0 represents the orientation of ox_1 as a face of oy, or equals O when the
two are not adjacent.



BACKUP SLIDES

ADDITIONAL DEFINITIONS




NEIGHBORHOOD GRAPHS

DEFINITION S3 (NEIGHBORHOOD GRAPHS)

&-radius graph: —{( j) € V21 |lxi —x;l2 < 8);
k-NN graph: ={({.j) € Vi |jx; —%jll2 < max (px(x4), px(x;))

5-CKNN graph [Berry and Sauer, 2019]: E — {(i, yeve, K=l - < 5} .

Pk (xi) Pk (x5



k-COCHAIN

A flow (k-cochain) wy on an SC/CB can be described by a linear combination of
k-simplices:

B Wy =) ; wii0F, where of € Iy

m Can further denote by wy = (w1, - - ,u.)k,nk)T € R™x

m Space of wy is Gy, which is isomorphic to R™x




k-COCHAIN

A flow (k-cochain) wy on an SC/CB can be described by a linear combination of
k-simplices:

B Wy =) ; wii0F, where of € Iy

m Can further denote by wy = (w1, - - ,wk,nk)T € R™x

m Space of wy is Gy, which is isomorphic to R™x

Example. The flow onthetoySCsiswq =7-[1,2]+2-[3,5] +
(—1)-[1,4], or

[7 o -1 0o 0 2 .

C1=00,2 1,3 1,4 2,3 3.4 [3,5]]GIR




GRADIENT, CURL, AND HARMONIC COMPONENTS

2 . 1 T
Po = argmin [W’B{ po — w]|?;
Po€R™

A . —1
P, = argmin [[W, "B p, — w]%
p2€R™

h=w- Wll/QBle’o *WIWBzf’z :

gradient curl




BACKUP SLIDES

APPROXIMATE 1-COCHAIN & UNDERLYING VECTOR FIELDS

W



LINEAR INTERPOLATION OF 1-COCHAIN

Let e = [i,]], since w, = j(l) C(y(t))y’(t)dt, if given only the vertex-wise vector field
((xi) = f(xi) € RP, one can approximate the geodesic by y(t) ~ x; + (x5 —x4)t and
the vector field along y by f(y(t)) =~ f(xi) + (f(x;) — f(xi))t, one has,

1 1

£T (v(1))y/ (t)dt ~ j [F(x2) + (F0x) — Fxa))t
0 (54)

(F(xi) + F(x;)) " (%5 —x1)

}T

0

S

o

I
N R S




LINEAR INTERPOLATION OF 1-COCHAIN

Let e = [i,]], since w, = j(l) C(y(t))y’(t)dt, if given only the vertex-wise vector field
((xi) = f(xi) € RP, one can approximate the geodesic by y(t) ~ x; + (x5 —x4)t and
the vector field along y by f(y(t)) =~ f(xi) + (f(x;) — f(xi))t, one has,

1 1

£T (v(1))y/ (t)dt ~ J [F(x2) + (F0gg) — Fox))t] T O — xq)dt
0 (54)

(F(xi) + F(x;)) " (%5 —x1)

T
0

S

o

I
N R S

Note that (S4) can be written in a more concise form using boundary operator By. Let
F € R™¥D with f; = F;, = f(xq). Since [B{ [Flji ; = f(xi) + f(x;), and
[-B{ X](1.j) = xj —xi. Therefore,

1
w :—Ediag(BlTXFT\Bll) IW



OBTAINING VERTEX-WISE VECTOR FIELD FROM 1-COCHAIN

Let Xg = —B{ X (so [Xglpt,j) = x; —xi) and define xg such that [xeljj) = x5 — 13-
Given the 1-cochain w, one can solve the following D least square problems to
estimate the vector field F on each point x;.

2
¢ = argmin {H'BI'W_ (Xel.e ©Xe) owH2} Ve=1---,D (S5)

veeRM




OBTAINING VERTEX-WISE VECTOR FIELD FROM 1-COCHAIN

Let Xg = —B{ X (so [Xglpt,j) = x; —xi) and define xg such that [xeljj) = x5 — 13-
Given the 1-cochain w, one can solve the following D least square problems to
estimate the vector field F on each point x;.

2
¢ = argmin {H'BI'W_ (Xel.e ©Xe) owH2} Ve=1---,D (S5)

veeRM
o, @ is Hadamard product and division, respectively. The solution to the £-th least square
problem corresponds to estimate f¢(xi) from %(fe (xi) 4 fe(x5)). l.e., (inner product)

1
2

(%5,0 — Xi,0) Wi

(£} (x0) + ) (%5)) = [(Xel,e @ Xe) 0 Wl j) = I —xi|2
) 1

W



OBTAINING VERTEX-WISE VECTOR FIELD FROM 1-COCHAIN

Let Xg = —B{ X (so [Xglpt,j) = x; —xi) and define xg such that [xeljj) = x5 — 13-
Given the 1-cochain w, one can solve the following D least square problems to
estimate the vector field F on each point x;.

2
¢ = argmin {H'BI'W_ (Xel.e ©Xe) owH2} Ve=1---,D (S5)

veeRM
o, @ is Hadamard product and division, respectively. The solution to the £-th least square
problem corresponds to estimate f¢(xi) from %(fe (xi) 4 fe(x5)). l.e., (inner product)

1
2

(%5,0 — Xi,0) Wi
x5 —xi|2

c anXD

(o) + 1 (3)) = [(Xe).e @ xe) 0 Wi 5 =

The estimated vector field F is

|
ﬁ{ol Py .. D

—5—



BACKUP SLIDES

APPLICATIONS




HOMOLOGOUS LOOP DETECTION—THEORY

Example.

PROPOSITION S4 (INDUCED DIGRAPH FROM Z;)

let zi fori=1,---, 1 be the i-th homology basis that
corresponds to the i-th homology class and Gy be the induced
digraph of the flow z;. Then foreveryi=1,--- , 1,
1. there exist at least one cycle in the digraph Gi such that
every vertex v € V can traverse back to itself (reachable);
2. the corresponding cycle will enclose at least one homology
class (no short-circuiting).

Sketch of proof.
m Reachable: harmonic flow is divergence-free
®m no short-circuiting: from Stoke'’s theorem and Poincaré
Lemma [Lee, 2013]
[ |




SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

Algorithm S1: SpectralLoopFind
Input: Z = [z1,---,zp,], V. E, edge distance d

Build induced digraph from z;:

1 fori=1,.---,pB1do 7 [1,2

2 Ef «{(s,t): (s,t) € Eand [zi](5 1) > O} 2 1,3

3 E; < {(t,s):(s,t) € Eand [zi](s1) < O} 2 = -1 [1,4] c RO
. 3 [2,3]

4 T + Percentile(|zy],1—1/p1) 5 3.4]

5 EX «+{eceEf UE] :llzilel < T} 2 35

6 Ei « EF UE]\ES

7 G;i < (V,Ey), with weight of e € E; being [d].

8 Gl = dives

9 fore = (t,sg) € E; do

10 P*(:==[sg,s1,- -+, t]), d* < Dijkstra(Gj, from=sq, to=t)

11 if d* < dmin then

12 t Ci < [t,sp,81, -,

Return: C1,---,Cp

1




SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

Algorithm S1: SpectralLoopFind

Input: Z = [z1,---,zp,], V. E, edge distance d
1 fori=1,.---,pB1do
2 Ef «{(s,t): (s, t) € Eand [z{](5 1) > 0}
3 Bl «{(t,;s): (s,t) € Eand [z{](5,¢) < O}

Thresholding z;:

4 T + Percentile(|zi|,1—1/B1)

5 EX «{e € Ef UE] :lizilel < T}

6 Ei « Ef UET\ES

7 G;i < (V,Ey), with weight of e € E; being [d].

8 Gl = dives

9 fore = (t,sg) € E; do

10 P* (= [sg, s1,- - - , t]), d* < Dijkstra(G;, from=sg, to=t) . E B UENES

11 if d* < dmin then

12 [ €+ [tsosyo ] m Each homology class has

2 ~ ni/p; edges
Return: €q,---,Cp, /B1 edg w



SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

Algorithm S1: SpectralLoopFind
Input: Z = [z1,---,zp,], V. E, edge distance d

Shortest “loop” with Dijkstra:

1 fori=1,---,p1 do m Dijkstra will find a loop for
2 | Ef «{(s,t): (s,t) € Eand [z{](5 1) > O} every v € V (reachable)
3 Eg < (6 8) oi(s t) B and[zils 1) < 0 m Every loop obtained is valid
4 T ¢ Percentile(jzq|, 1 —1/p1) (no short-circuiting)
s | Ef «{ecEfUE] :llzilel< T}
6 | EieEFUED\ES
7 Gi «+ (V, Ey), with weight of e € E; being [d]
8 Gl = dives N M
9 fore = (t,sg) € E; do Glormnse
10 P*(:=[sg,s1,- -+, t]), d* < Dijkstra(Gj, from=sg, to=t) \ o
11 if d* < din then Frind the

Shortet loop
12 ‘7 Ci < [t,so, 51, ., 1] from S0 €

Returl’l: 61, ,661 w



CLASSIFYING ANY 2-DIMENSIONAL MANIFOLD

B1(torus) = B1(two disjoint holes) = 2 -~

m Not possible to distinguish these two manifolds only Twodlm:hmw
by rank information

m From Theorem 1, the embedding of S'4S! can be

(roughly) factorized into two “lines” i

m Any loop in T? is a convex combination of the two
homology classes

» Intrinsic dimension = 2

Torus: T?

Remark. Can categorize the manifold M from Z

m With the classification theorem of surfaces
[Armstrong, 2013]

PROPOSITION S5 (SHAPE OF THE EMBEDDING Z OF A FLAT m-TORUS T™)

The envelope of the first homology embedding (1-cochain) induced by the harmonic 1-form
on the flat m-torus T™ is an m-dimensional ellipsoid.



OTHER APPLICATIONS

Visualize the basis of harmonic vector fields:

st nd rd th
1 coordinate 2" Coordinate 3 oordinate 4% coordinate

Higher-order simplex clustering [Ebli and Spreemann, 2019]:
m Theorem 1 supports the use of subspace clustering algorithm in this framework




BACKUP SLIDES

ASSUMPTIONS AND THEOREMS




M, M MiiMo
Disjoint manifold M; Connected manifold M
Simplicial complex SACS) = (iéﬂ, e ,)AZS)) SCx = (Zo, -+, Zy)
k-Laplacian f),iu) Ly
Homology space Hi (M) Hiy (M)
k-th Betti number B (My) B (M)
Homology embedding Y Y

Remark.
m Notation with I = disjoint manifolds

msc=U,sc” #sc w



DATA SAMPLED FROM A DECOMPOSIBLE MANIFOLD

ASSUMPTION 1

1. Hy(SC) (discrete) is isomorphic to the homology group Hy (M, R) (continuous)
2. Assume that M = M - - - #M and the isomorphic condition holds for every My, i.e.,

Remark.
1. Any procedure for constructing SC or weight function for Ly is acceptable

2. Manifold M can be decomposed

» Mostly true except for the known hard case of 4-manifolds



TOPOLOGY IS PRESERVED DURING CONNECTED SUM

ASSUMPTION 2

Denote the set of destroyed and created k-simplexes during connected sum by ®y and €y;
M = L1 \C = 2\ Dy is the set of non-intersecting simplexes. Then

1. no k-homology class is created during the connected sum process, i.e.,

Bi(SC) = ¥ Bw(sC™); and
i=1

2. The minimum eigenvalues of L%'Q: and ﬁfg are bounded away from the eigengaps 6;
of £V e, minfAmin(£EC), Amin(£p ")} > min{6y, -+, 8,0}

Remark.

1‘ |f dlm(M) > k, theﬂ g{k(MlﬁMZ) — :}Ck(Ml) @ j{k(MQ) [Lee, 2013} w

2. E.g., it happens when €, and ©y are cliques contained in small balls



SMALL PERTURBATIONS IN THE (k + 1)-SIMPLEX SET

ASSUMPTION 3 (|NFORMAL, SEE ALSO ASSUMPTION 64 IN THE THESIS)
Let VNVk = |Bk+1[’ﬁk, mk+1]|wk+1, "va—l = |Bk[1, ‘)Tk]lv”vk. Forf =kork—1, we have

|€x| is small: max {w¢(0)/We(0o) — 1} < ey;
oEMy

D1 | is small: max {W¢(0)/We (o) — 1} < €g; and
oEMNy

The net effect is small:  max {{wg(0)/We(o) — 1]} < €.
oEMNy

1. Not too many triangles are created/destroyed during connected sum

2. Sparsely connected manifold
» Density in the connected sum region should be smaller than other regiomsw
C

3. Empirically, the perturbation is small even when M is not sparsely conne



SUBSPACE PERTURBATION: SKETCH OF PROOF OF THEOREM 1

Sketch of proof. The proof (in Supplement) is based on

1. Bound the error (DifFL]‘ip and DifFL?j’W” terms) between Ly and LAZk with Ly

» L, = the Laplacian after removing the k-simplices in both €, and @y during
connected sum

2. Use of a variant of the Davis-Kahan theorem [Yu et al., 2015] (the spectral norm
|- 1); and

3. Bound the spectral norm of £y for a simplicial complex [Horak and Jost, 2013]

”LkHQ <k+2.

» Any (k+ 1)-simplex has (k + 2) faces

A/



SUBSPACE PERTURBATION FOR CUBICAL COMPLEX

PROPOSITION S6

Given an up k-Laplacian £ = Ay 1AL 1 With Ay41 = W:/ZBkHWL/il built from a
cubical complex, we have
L3P 12 < Ak = 2k +2.

Sketch of proof. The (2k 4 2) term comes from the fact that a (k + 1)-cube has (2k 4 2)
faces. The rest of the proof follows from [Horak and Jost, 2013]. [ |

COROLLARY S7 (L) BUILT FROM A CUBICAL COMPLEX)

Under Assumptions 2-3 with DiffL]‘ip as well as Diffof‘”” defined in Theorem 1 and
A = 2k + 2, there exists a unitary matrix O such that (1) holds.
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